Certain computer programs contained in this product [or device] were developed by HygroMatik GmbH ("the Work(s)").

Copyright © HygroMatik GmbH [14.07.2020]
SLH 03/06/09/15/25/40/50
All Rights reserved.

Current version of this manual to be found on: www.hygromatik.com

HygroMatik GmbH grants the legal user of this product [or device] the right to use the Work(s) solely within the scope of the legitimate operation of the product [or device]. No other right is granted under this licence. In particular and without prejudice to the generality of the foregoing, the Work(s) may not be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form other than as expressly granted here without the prior written consent of HygroMatik GmbH.

Information in this manual is subject to change or alteration without prior notice.

⚠️ WARNING
Risk of electrical shock!
Hazardous electrical voltage!
All electrical work to be performed by certified expert staff (electricians or expert personnel with equivalent training) only.
6.2 Water discharge ... 26
6.3 Water connections final check ... 27

7. Electrical connection .. 28
7.1 Electrical installation approach .. 28
7.2 Cable connections ... 29
7.3 Safety interlock .. 30
7.4 Control signal ... 30
7.4.1 1-step operation .. 30
7.4.2 Operation with an active humidity sensor or external controller 30
7.4.3 Wiring for control signal and safety (interlock) system for multiple devices 31
7.5 Connection diagram .. 31
7.6 Electrical installation check list .. 31

8. Commissioning .. 32

9. Maintenance ... 33
9.1 General ... 33
9.1.1 Safety instructions for maintenance ... 33
9.2 Maintenance frame work when unit is operated with fully demineralised water and condensate 34
9.3 Maintenance when unit is operated with tap water or partially softened water 34
9.4 Removing and cleaning the steam cylinder ... 35
9.5 Steam cylinder and cylinder base cleaning ... 39
9.6 Level control device cleaning .. 40
9.7 Heater element replacement ... 41
9.8 Thermo switch replacement (for heater elements) .. 41
9.9 Releasing a thermo switch that has triggered ... 42
9.10 Inspection of wiring connections and heater element wiring ... 42
9.11 Removal and reinstallation of the solenoid valve including fine filter cleaning 43
9.12 Cleaning of blow-down pump .. 44
9.13 Inspection of hoses .. 44
9.14 Functional check ... 44

10. Dismantling .. 45

11. Unit Control .. 46
11.1 General description .. 46
11.1.1 Wiring Diagrams ... 48
11.1.2 Mainboard inputs and outputs ... 52
11.2 Control operation ... 53
11.2.1 Principal user guidance .. 53
11.2.2 Menu structure ... 54
11.2.3 Menu tree ... 55
11.3 The control panel .. 55
11.4 Navigation within a menu .. 56
11.5 Tabular representation of reading value list and provider level submenus 57
11.5.1 The reading value list ... 57
11.5.2 Provider level submenus and relating parameters ... 58
1. Introduction

Dear Customer,

Thank you for choosing a HygroMatik steam humidifier.

HygroMatik steam humidifiers represent the latest in humidification technology.

In order to operate your HygroMatik steam humidifier safely, properly and efficiently, please read these operating instructions.

Employ your steam humidifier only in sound condition and as directed. Consider potential hazards and safety issues and follow all the recommendations in these instructions.

If you have additional questions, please contact your expert dealer.

For all technical questions or spare parts orders, please be prepared to provide unit type and serial number (see name plate on the unit).

1.1 Typographic Distinctions

- preceded by a bullet: general specifications

» preceded by an arrow: Procedures for servicing or maintenance which should or must be performed in the indicated order

✓ Installation step which must be checked off.

italics Terms used with graphics or drawings

1.2 Documentation

Please note

In addition to this manual, the appropriate FlexLine Control documentation is mandatory for the operation of the unit. This is not applicable to StandardLine devices, here the documentation of the controller is included in the operation manual.

Retention

Please retain these operating instructions in a secure, always accessible location. If the product is resold, turn the documentation over to the new operator. If the documentation is lost, please contact HygroMatik.

Versions in Other Languages

These operating instructions are available in several languages. If interested, please contact HygroMatik or your HygroMatik dealer.

1.3 Symbols in Use

1.3.1 Specific Symbols related to Safety Instructions

According to EN 82079-1 (and ANSI Z535.6), the following signal words are used within this document:

⚠️ DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

⚠️ NOTICE

NOTICE is used to address practices not related to physical injury.

1.3.2 General Symbols

Please note

This symbol is used whenever a situation requires special attention beyond the scope of safety instructions.
1.4 Intended Use

HygroMatik electric heater steam humidifiers serve for steam production based on tap water, partially softened water or fully desalinated water/cleaned condensate.

Proper usage also comprises the adherence to the conditions specified by HygroMatik for:
- installation
- dismantling
- reassembly
- commissioning
- operation
- maintenance
- disposal.

Only qualified personnel may operate the unit. Persons transporting or working on the unit must have read and understood the corresponding parts of the Operation and Maintenance Instructions and especially the chapter 2. „Safety Notes“.

Additionally, operating personnel must be informed of any possible dangers by the provider. A copy of this manual is to be placed at the unit’s operational location.

By construction, HygroMatik steam humidifiers are not qualified for exterior application.

⚠️ WARNING

Risk of scalding!
Steam with a temperature of up to 100 °C (212 °F) is produced.
Do not inhale steam directly!
2. Safety Instructions

These safety instructions are required by law. They promote workplace safety and accident prevention.

2.1 Guidelines for Safe Operation

2.1.1 Scope
Comply with the accident prevention regulation „DGUV Regulation 3“ to prevent injury to yourself and others. Beyond that, national regulations apply without restrictions. This way you can protect yourself and others from harm.

2.1.2 Unit control
Do not perform any work which compromises the safety of the unit. Obey all safety instructions and warnings present on the unit.

In case of a malfunction or electrical power disruption, switch off the unit immediately and prevent a restart. Repair malfunctions promptly.

\[\text{\textbf{WARNING}}\]

Restricted use.
IEC 60335-1 stipulates as follows:
This device may be used by children of eight years of age and above as well as by persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge so long as they are supervised or have been instructed regarding the safe use of the device and understand the hazards that may result from it. Cleaning and user maintenance of the unit must not be undertaken by children without supervision.

2.1.3 Unit Operation

\[\text{\textbf{WARNING}}\]

Risk of scalding!
Uncontrolled hot steam escape in case of leaking or defective components possible. Switch off unit immediately.

\[\text{\textbf{WARNING}}\]

For Ministeam devices applies:
Risk of scalding!
No persons may be under the cloud of steam blowing out (at a distance of approx. 1 m/40 inch in the direction of blowing out and 0.5 m/20 inch on both sides of the device).

\[\text{\textbf{NOTICE}}\]

Risk of material damage!
• The unit may be damaged if switched on repeatedly following a malfunction without prior repair. Rectify defects immediately!
• The unit must not be operated on a DC power supply.
• The unit may only be used connected to a steam pipe that safely transports the steam (not valid for MiniSteam units).
• Regularly check that all safety and monitoring devices are functioning normally. Do not remove or disable safety devices.
• Steam operation is only allowed when the unit cover is closed.

\[\text{\textbf{NOTICE}}\]

Water leaks caused by defective connections or malfunctions are possible.

Water is constantly and automatically filled and drained in the humidifier. Connections and water-carrying components must be checked regularly for correct operation.
2.1.4 Mounting, dismantling, maintenance and repair of the unit

NOTICE

The HygroMatik steam humidifier is IP20 protected. Make sure that the unit is not object to dripping water in the mounting location.

Installing a humidifier in a room without water discharge requires safety devices to protect against water leakages.

- Use genuine spare parts only
- After any repair work, have qualified personnel check the safe operation of the unit
- Attaching or installing of additional components is permitted only with the written consent of the manufacturer

WARNING

Risk of electrical shock!

Hazardous electrical voltage!

Any work on the electrical system to be performed by certified expert staff (electricians or expert personnel with comparable training) only.

Steam operation may only be started when the unit cover is closed.

During maintenance or installation work, the device must be disconnected from the power supply and secured against being switched on again. The absence of voltage must be ensured by a measurement.

Leaks can cause leakage currents. Observe safety regulations on working with voltage parts (applies to electrode steam humidifies).

After electrical installation or repair work, test all safety mechanisms (such as grounding resistance).

NOTICE

Use only original fuses with the appropriate amperage rating.

Regularly check the unit’s electrical equipment. Promptly repair any damage such as loose connections or burned wiring.

Responsibility for intrinsically safe installation of the HygroMatik steam humidifiers is incumbent on the installing specialist company.

2.2 Disposal after dismantling

The humidifier is made up of metal parts and plastic parts. In reference to European Union directive 2012/19/EU issued on 4 July 2012 and the related national legislation, please note that:

The components of the electrical and electronic devices must not be disposed of as municipal waste, and therefore the method of waste separation must be applied. The public or private waste collection systems defined by local legislation must be used.

The operator is responsible for the disposal of unit components as required by law.
3. Transport

3.1 Overview

Please note
Proceed carefully when transporting the steam humidifier in order to prevent damage due to stress or careless loading and unloading.

3.2 Packing

Please note
Pay attention to the icons affixed to the packing box.

3.3 Interim Storage

Store the unit in a dry place and protect from frost and strong sunlight.

3.4 Check for Complete and Correct Delivery of Goods

Upon receipt of the unit, confirm that:

- model and serial number on the name plate match those specified in the order and delivery documents
- the equipment is complete and all parts are in perfect condition

Please note
In case of damage from shipment and/or missing parts, immediately notify the carrier or supplier in writing.

Time limits for filing freight claims with shipping companies are*:

<table>
<thead>
<tr>
<th>Shipping company</th>
<th>After receipt of goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriers</td>
<td>no later than 4 days</td>
</tr>
<tr>
<td>Parcel service</td>
<td>immediately</td>
</tr>
</tbody>
</table>

* Time limits for some services subject to change.
4. Functional Description and Device Composition

4.1 Mode of Action

The immersion heater principle

Depending on the output rating, up to six heater elements are arranged within a closed cylinder. Exemplary given, the figure below shows the heater element and other main components of the SLH09 steam generator model.

The cylinder(s) are filled with either tap water of varying quality, fully desalinated water or partially softened water. The heat introduced by the heater element(s) heats up the cylinder water to approx. 100 °C, transforming the water into steam with a temperature of approx. 100 °C and very little positive pressure (so called pressureless steam). This steam is virtually mineral-free and germ-free.

When fully desalinated water is used, the cylinder water is almost totally clear of minerals. This situation guarantees a long lifetime of the cylinder(s) and the heater element(s), since virtually no hardeners will fall-out and no mineral deposits will occur. Such, the number of inspections and/or maintenance operations required will be reduced to a minimum.

When tap water is used for operation, some of the minerals dissolved in the water are likely to settle in the cylinder in form of solids of various compositions. However, most of the solids are flushed out by cyclic blow-down with the help of a heavy-duty blow-down pump.
4.2 Operational Sequence
The steam humidifier is switched on by pressing the control switch on the front panel to the „I“ position. When a demand for humidification is signalled by a hygrostat, a humidity sensor or an external controller (depending on the implementation), the inlet solenoid valve (25) opens and water is fed into the steam cylinder.

Filling level in the cylinder is controlled by a level control device (27)*. In a plastic cylinder, connected to the steam cylinder via hoses in the way communicating tubes are connected, a sensor for continuous proportional water level survey is located.

The cylinder water is periodically blown down. For usage of the unit with fully desalinated water, the blow-down function may be blocked.

Water blow-down is achieved by means of the blow-down pump (32)* that is continuously monitored during unit operation. In case of pump disruption, the HygroMatik steam humidifier is shut off.

With normal water quality, blow-down loss is in the range of 7 to 15% of the steam amount produced. Depending on water quality, a full steam cylinder blow-down is run every 3 to 8 days.

Mineral deposits settle in the open area below the heater element(s) and are removed through periodic maintenance. The blow-down pump itself has wide openings and can flush out smaller pieces of mineral deposit. This extends the service life of the unit and reduces the required maintenance interval.

On blow-down, water flows from the pump into the drain hose system.

For maintenance purposes, the cylinder water may be pumped out by pressing and holding the control switch in the „II“ position.

*) numbers indicated correspond with those in the exploded view in the „Exploded view“ chapter.

4.3 Internal Output Setting

4.3.1 Continuous control
for units with 1...3 heater elements

4.3.2 Combination of 1-step switching and continuous control
for units with 6 heater elements

If the humidifier features more than 3 heater elements, service provision is accomplished in 2 steps. As long as a certain threshold is not reached, the heating power demanded is delivered exclusively via the solid state relay and 3 heater elements by using continuous control (stage 1). If the output power demand exceeds the power available in stage 1, 3 more heater elements are additionally switched on in a 1-step mode (stage 2). The power demand beyond what is available in stage 2 is then covered in stage 1 by the solid state relay driven in proportional mode.

4.4 Mechanical Construction
The StandardLine heater steam humidifiers are designed for wall mounting.
5. Mechanical installation

WARNING

Risk of foot injuries!
Prevent unit from dropping during installation!
Helping hand of a second person is advisable.

WARNING

Risk of electrical shock!
Hazardous electrical voltage.
During installation, the unit must be disconnected from power supply and secured against being switched on again. The absence of voltage must be ensured by a measurement.

5.1 Environment Parameters to be met and Mounting Recommendations

When selecting the installation site for the steam humidifier, take the following into account:

- The minimum clearances indicated in the fitting measures section must be observed in order to ensure adequate unit ventilation and allow for unobstructed access in case of maintenance
- Protection class IP20
- By design, HygroMatik steam humidifiers are not qualified for outdoor installation (electrical components and water-bearing parts may be damaged)
- Ambient temperature must lie between +5 and +40 °C (+41 and +104 °F) in order to protect the unit electronics against damage; frost may damage the steam cylinder, the solenoid valve and pump, as well as make hoses burst
- Relative humidity must not exceed 80 % r.h., since values beyond may lead to electronic malfunction or damage
- Installation in a closed room requires aeration and, eventually, temperature conditioning in order to meet the a.m. environmental conditions
- The steam humidifier should be installed as close as possible to the steam manifold. Optimum performance is only guaranteed when steam and condensate hoses are kept short
- Make use of existing water connections for supply and draining
- Hoses must be laid at a consistent 5 to 10 % incline/decline; sagging and kinking prevention is a must
- Mount the unit on a stable, preferably solid wall offering the bearing capacity required (s. unit technical specifications). If such a wall is not at hand, the unit may be attached to a stand bracket firmly bolted to the floor
- For proper functioning of the level control, plumb and level installation of the unit is required
- The steam humidifier rear panel heats up during operation to a maximum of 70 °C (158 °F). Take care that the construction on which the unit is to be mounted is not made of temperature-sensitive material
5.1.1 Dimensions and Mounting Directions

Table of dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>X [mm/inch]</th>
<th>Y [mm/inch]</th>
<th>Z [mm/inch]</th>
<th>A [mm/inch]</th>
<th>B [mm/inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLH03-SLH09</td>
<td>350/~13.8</td>
<td>535/~21</td>
<td>245/~9.6</td>
<td>295/~11.6</td>
<td>535/~21</td>
</tr>
<tr>
<td>SLH15-SLH25</td>
<td>425/~16.7</td>
<td>695/~27.4</td>
<td>320/~12.6</td>
<td>370/~14.6</td>
<td>695/~27.4</td>
</tr>
<tr>
<td>SLH40-SLH50</td>
<td>590/~23.2</td>
<td>790/~31.1</td>
<td>415/~16.3</td>
<td>535/~21</td>
<td>787/~31</td>
</tr>
</tbody>
</table>

Wall clearances
When mounting the steam humidifier, the wall clearances shown in the fig. below must be obeyed:

For wall mounting drill measures, please consult the table above (measure A). In case of no suitable wall available for mounting the unit, it is recommended that installation is made on brackets firmly anchored in the floor.

» mark the holes for the upper suspension brackets screws
» drill holes and dowel
» screw in the supplied mounting screws; let the screws protrude approx. 12 mm/.5 inch from wall
» ensure firm fixation and load-carrying capacity of the mounted screws!
» hook in the unit and ensure safe suspension
» mark the holes for the lower suspension brackets screws
» remove the unit
» drill holes and dowel
» hook in the unit and mount the lower screws firmly

To function properly, the steam humidifier must hang level and plumb.
Device connections:

steam outlet

device front

water inlet

cable entries

waste water connection
5.2 Unit Installation Check

Before start-up, pls. check proper unit installation following the list below:

☑️ Unit perpendicularly aligned in both the vertical and horizontal axis?
☑️ All clearances obeyed?
☑️ Steam hose installed with a 5 - 10 % minimum incline/decline (see chapter "Steam line")?
☑️ Condensate hose features a loop functioning as a steam barrier (see chapter "Condensate hose")?
☑️ Steam manifold(s) properly positioned?
☑️ All bolts and clamps properly tightened?
☑️ Steam manifold(s) horizontally mounted and suspended on the free end, if required?
☑️ All seals (o-rings) in place?
☑️ All ventilation slots on housing top unobscured?
5.3 Absorption Distance B_N

The "absorption distance" (B_N) is defined as the distance from the steam feed to where the steam is completely absorbed in the treated air. Within the absorption distance, steam is visible as mist in the air stream.

Condensation may occur on anything installed within the absorption distance.

Although steam outside the absorption distance (B_N) is completely absorbed, it is not yet evenly diffused in the duct. If you plan to install any parts or devices inside the absorption distance, such as sensors or elbows, we recommend increasing the absorption distance using the formulae below. The absorption distances required for certain installed fittings are distinguished by separate symbols and calculated as a multiplier of the absorption distance B_N.

The absorption distance has no fixed value, but depends on many factors. These are depicted in the absorption distance nomogram below.

Absorption Distance

<table>
<thead>
<tr>
<th>B_N</th>
<th>for normal obstructions such as sensors, ventilators, outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_c = (1.5...2) \times B_N$</td>
<td>for fine filters, heat registers</td>
</tr>
<tr>
<td>$B_s = (2.5...3) \times B_N$</td>
<td>for particle filters</td>
</tr>
<tr>
<td>$B_d = (3...5) \times B_N$</td>
<td>for humidity sensors, duct humidistats</td>
</tr>
</tbody>
</table>

The absorption distance nomogram is used to determine the absorption distance B_N using the absorption distance nomogram (also see Section "Absorption Distance Nomogramm"). Enter the value of the parameters enumerated above into the respective quadrants. The resulting point of intersection indicates the value of the desired absorption distance B_N.

Method:

Graphically determine absorption distance B_N using the absorption distance nomogram (also see Section "Absorption Distance Nomogramm"). Enter the value of the parameters into the respective quadrants. The resulting point of intersection indicates the value of the desired absorption distance B_N.

Notes:

- Air humidity before humidification x_1:[g/kg]
- Air temperature after humidification t_2: [°C]
- Specific increase in humidity Δx: [g/kg]
- Quantity of steam introduced m_D: [kg/h]
- Air speed w_L: [m/s]
- Total length of steam manifold l_D: [mm]

5.3.1 Determining the Absorption Distance

To determine the absorption distance, the following parameters are required:

- Quantity of steam introduced \dot{m}_D in kg/h.
- Air speed w_L in m/s in air duct.
- Total length l_D of the steam manifold installed in the air duct.

Length l_D of the usable steam manifold depends on the dimensions of the air duct. The length of the absorption distance can be reduced by using multiple steam manifolds (also see section on the steam manifold).
5.3.2 Absorption Distance Nomogram

Example
Given: circulating air mode
\(x_1 = 5 \text{ g/kg}, \Delta x = 3 \text{ g/kg} \)
\(t_i \approx t_2 = 20^\circ \text{C} \)
\(\dot{m}_D = 100 \text{ kg/h}, l_b = 1,25 \text{ m} \)
\(w_L = 5 \text{ m/s} \)

Result:
absorption distance \(B_n \approx 0,8 \text{ m} \)

5.4 Steam Manifold

5.4.1 General installation guidelines

When installing steam manifolds, pls. follow these guidelines:

Positioning within duct
- Install the steam manifold as close as possible to the steam humidifier in order to minimize steam loss through condensation
- Steam manifold placement on the supply side of the air duct is preferable
- Install steam manifold strictly horizontal in order to ensure proper condensate drain
- Shown installation and positioning dimensions are based on empiric values. Special environmental conditions may require adjustments. Pay special attention to avoid condensate generation in air duct

Allowable pressures
- Max. allowable pressure in air duct is 1500 Pa/.218 PSI (exemption: SLE02, SLH02, KIT E02 and KIT H02 only allow for 1200 Pa/.174 PSI)
- On suction side, max. -500 Pa (.07 PSI) is tolerable
- With high-pressure air conditioning systems, modifications of the unit’s drain hose system may possibly be required depending on the overall pressure situation. These modifications must be coordinated with your expert dealer.

Water drain
- We point out that according to the German Association of engineers (VDI) guideline VDI 6022, a water drain must be provided within the absorption distance inside the air duct

When increased airflow speed is encountered
- Air flow rates beyond 3m/s (9.84 ft/s) may lead to condensate drainage problems at the steam manifolds due to vacuum built-up. A possible remedy is twisting the steam manifold in its horizontal axis by few angular degrees. In case of problems, pls. consult your expert dealer.

5.4.2 Recommendations for dimensioning

The recommendations given below are based on homogenous air flow in the duct.

Horizontal installation of steam manifold

Standard steam manifold arrangement:

Air duct
Steam manifold (Side view)

Air flow direction

An even distribution of steam manifolds ensures a uniform steam distribution.

*) s. table of manifold lengths

Horizontal assembly position in duct

Please use the total height of the duct!
Minimum distance for condensation avoidance:

- **L_{min} = 210\text{mm}/8.3 \text{ inch:**} "Steam manifold - Next steam manifold“ distance

- **L_{4\text{min}} = 120\text{mm}/4.7 \text{ inch:**} “Lowest steam manifold - Duct bottom plane“ distance

- **L_{5\text{min}} = 120\text{mm}/4.7 \text{ inch:**} “Highest steam manifold - Duct ceiling plane“ distance

Steam manifold arrangement for special air duct shapings

<table>
<thead>
<tr>
<th>Flat</th>
<th>Steam manifold laterally staggered (with respect to air flow direction) in case of (L_{\text{min}}) (s. above) not to be met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very flat</td>
<td>by tilting the steam manifold 30 - 45° towards the air flow direction, the minimum upper clearance can be reduced to 70 mm/2.8 inch.</td>
</tr>
<tr>
<td>Narrow, High</td>
<td>identical lengths one on top of the other, staggered laterally if possible</td>
</tr>
<tr>
<td>Square</td>
<td>identical lengths, staggered vertically and laterally</td>
</tr>
<tr>
<td>Low, Very Wide</td>
<td>facing each other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DN25/1"</th>
<th>30°</th>
<th>45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>182/7.2</td>
<td>168/6.6</td>
</tr>
<tr>
<td>H2</td>
<td>225/8.6</td>
<td></td>
</tr>
<tr>
<td>DN40/1 1/2"</td>
<td>193/7.6</td>
<td>179/7.2</td>
</tr>
<tr>
<td></td>
<td>230/9.1</td>
<td></td>
</tr>
</tbody>
</table>
Vertical steam manifold installation

Steam manifold arrangement

Horizontal installation of the steam manifolds is preferable. However, vertical installation into the air duct from below is also possible.

Standard manifold dimensions [mm]/[inch]***:

<table>
<thead>
<tr>
<th>Size</th>
<th>220</th>
<th>400</th>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1450</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.7</td>
<td>15.7</td>
<td>23.6</td>
<td>35.4</td>
<td>47.2</td>
<td>57.1</td>
</tr>
</tbody>
</table>

*** Special lengths on demand.

Number and size of the steam manifolds available as well as the nominal diameter of the respective steam and condensate hoses may be taken from the tables shown in chapter „Technical Data“.
5.5 Steam line and condensate hose layout

Please note

Because of the high requirements on hose material under the operating conditions given, it is recommended to use genuine HygroMatik hoses only.

5.5.1 Guide lines for steam line design

- Steam hose nominal diameter must not be smaller than the steam outlet of the HygroMatik steam humidifier (do not restrict the cross-section, otherwise back pressure will increase)
- Steam hoses must be laid without sags and kinks and with a continuous slope of 5-10% (otherwise sags may result).
- Steam hoses must be supported every 500 mm (20 inches) by clamp brackets
- Steam hoses should be kept as short as possible. Implement lengths beyond 5 m (16 ft.) as insulated fixed piping to keep energy loss and condensate generation to a minimum. Beyond 10 m (32 ft.) insulated installation is a must. Fixed piping is generally recommended for straight steam line segments
- When 2 steam manifolds are in use (other than with a standard implementation), place steam Y piece as close as possible to the steam manifolds. Such, for the main part of the piping just one steam hose is required and condensate loss is minimized
- Allow easy access to the steam pipe/steam hose installation
- Pressure conditions within the duct are influenced by device steam output, steam line layout and the duct composition itself. In some rare situations it may become necessary to optimize steam line layout for achieving the results intended
- Respect minimum bending radii:
 - DN 25 Steam hose: \(R_{\text{min}} = 200 \text{ mm/8”} \)
 - DN 40 Steam hose: \(R_{\text{min}} = 400 \text{ mm/16”} \)

5.5.2 Condensate hose layout (only for electrode steam humidifiers)

The condensate hose may be run from the steam manifold back to the steam cylinder, as depicted in the schematic drawing below with concern to installation type 1. Alternatively, the condensate hose may be fed directly in a wastewater pipe or a drain (s. installation type 2).

Please note

Should condensate return into the steam cylinder be intended, the connection stub on the cylinder upper part must be drilled out first with a ANSI drill size „O“ drill. To do so, the steam cylinder must be removed from the housing (s. maintenance chapter, section „Steam cylinder removal and reinstallation“). In case of a console instead of a housing, the cylinder is to be lifted off the cylinder base for drilling the stub or may even remain in place.

Drill out condensate hose connection stub with an 8 mm (ANSI drill size „O“) drill, if required

For heater element humidifiers:

If condensate return is necessary, please contact the HygroMatik hotline.
5.5.3 Steam line and condensate hose installation types

Installation type 1

Steam manifold is positioned more than 500 mm above device upper edge:

» Run steam hose to a height of 400 mm/16 inch minimum above the steam humidifier and then to the steam manifold with a continuous incline of 5 to 10%.

» Feed condensate hose from steam manifold with a decline into wastewater pipe or drain.

» As a steam barrier, lay out a 200 mm/8 inch min. loop (s. schematic representation below). Minimum distance from steam manifold to loop must be 500 mm/20 inch. Fill loop with water prior to steam humidifier commissioning.

Installation type 2

Steam manifold is positioned less than 500 mm above or below device upper edge:

Please note

In this arrangement the condensate hose cannot be fed back to the steam humidifier.

» Run steam hose to a height of 400 mm/16 mm minimum above the steam humidifier and then to the steam manifold with a continuous decline of 5 to 10%.

» Feed condensate hose to a wastewater pipe/drain with a 200 mm/8 inch diameter loop as a steam barrier. Minimum distance from steam manifold to loop must be 500 mm/20 inch. Fill loop with water.
6. Water connection

WARNING

Risk of scalding!
Very hot water to be found in and around the steam humidifier during and after operation. Have all installation work done by expert staff in order to avoid scalding hazards due to improper water guidance.

WARNING

Risk of electrical shock!
Hazardous electrical voltage!
Before starting installation work ensure that the unit is not yet connected to the power supply.

General Rules

- Obey local water utility regulations
- Verify that necessary safety measures have been taken – in compliance with either German Technical and Scientific Association for Gas and Water (DVGW) guidelines (DIN EN1717) or local regulations – that eliminate backflow of polluted water into drinking water treatment facilities. This may require the installation of a system separator of the CA type (minimum measure, allowable only when free discharge into the drainage system is given). Within the humidifier, a double check valve (58) is located in the water supply line. It prevents - in accordance with DIN EN 61770 - the backflow of water. As an option for installation by the customer, the DVGW-conform HyFlow system separator or a after market system separator of the BA/CA type are available from HygroMatik.
- For connection to the water supply pipe, make use of a water hose
- Blow-down water must drain freely
- Supply water must not exceed 40°C (104°F)
- Allowable range of water pressure: 1 to 10 bar / 14.5 to 145 psi (100 x 10³ to 100 x 10⁴ Pa)

The following applies to electrode steam humidifiers:

- Use feed water without chemical additives and with a conductivity between 200 and 800 µS/cm only. Beyond conductivity levels of 800µS/cm up to a maximum of 1250µS/cm and below conductivity levels of 200µS/cm to a minimum of 125µS/cm, special adjustments are required. In this case please contact your specialist dealer.

The following applies to heater steam humidifiers:

- min. conductivity of feedwater: 3µS/cm
- from a water hardness of 15° German hardness, a preceding water softening is recommended
- operation with fully softened water (0° German hardness) is possible
6.1 Operation of electrode steam humidifier with softened water

NOTICE

Do not use softened water unless special measures are taken!

When feeding softened water into the HygroMatik steam humidifier, the aspects outlined below must be taken into account.

Softened water may cause
- unacceptably high conductivity
- the formation of salt bridges between the electrodes and the electrode leads on the inner surface of the steam cylinder upper part
- foaming in the steam cylinder

Salt bridges may cause electrical arcs. These are indicated by the presence of black grooves in the top part of the cylinder. The cylinder must then be replaced to prevent further damage to the cylinder material, as well as short circuits which may trip main circuit breaker.

Foam may come into contact with the maximum level sensor electrode and trigger the max. level status message despite the cylinder not being full yet and the nominal current not yet established.

With softened water, at operating temperature conductivity level usually is higher than is the case with tap water.

If using a water softening system, we recommend diluting the softened water with normal tap water to produce an overall hardness between 4-8°gH. This value can be set lower if the water does not foam.

6.2 Water supply

NOTICE

Foreign material in water supply pipe may cause premature wear of the solenoid valve.
Flush the water supply pipe before making connection to the solenoid valve. This is of particular importance in case of a newly installed pipe.

- Install a shut-off valve (SV) in the supply line.
- Install a water filter (WF) if required due to bad water quality.

Please note

- Shut-off valve (SV) and water filter (WF) are not included in the delivery
- For connection to the water supply line, the water hose (56) with cap nuts (1) on both ends supplied with the unit may be used.
- In case of no safety device for drinking water protection according to DIN EN 1717 present in the house installation system, a system separator at least of the CA type or use of the Hyflow retrofit option is mandatory.
6.3 Water discharge

WARNING
Risk of scalding!
During blow down, up to 0.3 l/sec (08 gal./sec) are being drained with a temperature of about 95 °C (203°F). Ensure that the drain hose is reliably fastened and wastewater can drain freely and pressureless.

Please note
Humidifier installation location and wastewater discharge must be on the same pressure level. In case of a drain connection on positive pressure, pls. consult your expert dealer.

Guidelines for water discharge composition

- Use flexible water hose
- Do not buckle drain hose
- Discharge line and drain pipe material must be temperature resistant up to 95°C (203°F)

How to proceed

- Run a 1 1/4 " drain hose of 250 to 1000 mm (10 to 40 inch) length into a pressure-free outlet according to DIN EN 1717. The hose must be guided sideways of the humidifier to prevent ascending vapor from condensating on the humidifier's housing.

Valid for all steam humidifiers (KITS are not included):

- Fit drain hose to connection stub on humidifier housing bottom side.
- Slide pump drain hose onto one of the grounding clips (s. fig. below).
- Slide overflow hose of the HyFlow system separator (if present) onto the other grounding clip.

*) the numbers refer to the exploded view in the chapter with the same name.

Make connection as follows:

- Attach cap nut with inner seal ring to inlet screw joint on the humidifier housing and tighten.
- Screw the other hose end cap nut with its inner seal on a customer-provided water tap (cap nut internal thread is ¾").
- Strainer must be placed inside the solenoid valve

NOTICE

Do not overtighten the cap nut! Excessive tightening will destroy the fitting.

Please note

- Screw the other hose end cap nut with its inner seal on a customer-provided water tap (cap nut internal thread is ¾").
Grounding clip functioning

The two grounding clips attached to the inner surface of the housing drain stub are in direct contact with water and shunt potential residual electric currents away from the housing during blow-down and in case of a cylinder water overflow.

Between the pump drain hose jacket and the inner surface of the cabinet drain connection, a gap exists due to the diverging diameters. If water collects on the base plate, it will flow through this gap into the drain hose and then into the drainage system.

Please note

With the optional wastewater cooling system HyCool (not available for FLP-XX-TPRO units), HygroMatik offers an option for limiting the steam humidifier wastewater temperature in order to protect thermosensitive wastewater pipe lines. By blending with tap water during blow-down, wastewater temperature is below 60°C (140°F) as long as inlet water temperature does not exceed 30°C (86°F).

6.4 Water connections final check

Go down the following water installation checklist:

☑ All screws and clamps properly tightened?
☑ Water supply line flushed before making connections?
☑ Water connection properly installed?
☑ Water discharge properly installed?
☑ Does blow-down water drain freely?
☑ Water supply line and water discharge leakage-free?
7. Electrical connection

WARNING

Danger of electrical shock!
Dangerous electrical voltage!
All work relating to the electrical installation may only be carried out by designated specialist personnel (electrician or qualified person with equivalent training).

Do not connect the steam humidifier to the live power supply before all installation work has been completed.

Please note

The customer is responsible for monitoring the qualifications of the specialist personnel.

General installation rules

- All local rules concerning the implementation of electrical installations must be obeyed
- Electric connector cables to be laid professionally
- Install the electrical connections according to the wiring diagram
- With units of a nominal power output > 33 kW electrical connection to a permanent line is mandatory (according to VDE 0700 Part 98, IEC 60335-2-98)

NOTICE

Possible electronical components destruction through electrostatical discharge!
Prior to commencing electrical installation work, steps must be taken to guard the sensitive electronical components of the unit control against damage from electrostatical discharge.

7.1 Electrical installation approach

» Provide fuses with a contact gap of at least 3mm per pole.

» Install a separate main connection for each steam cylinder including main circuit breaker, main switch etc.

» Make main connection according to the table below.

Main connection

For the StandardLine steam humidifiers, main connection is to be implemented as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Main connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE02</td>
<td>220-240 VAC/1~/50-60Hz</td>
</tr>
<tr>
<td>SLE05</td>
<td>380-415 VAC/3~/50-60 Hz</td>
</tr>
<tr>
<td>SLE10</td>
<td></td>
</tr>
<tr>
<td>SLE15</td>
<td></td>
</tr>
<tr>
<td>SLE20</td>
<td></td>
</tr>
<tr>
<td>SLE30</td>
<td></td>
</tr>
<tr>
<td>SLE45</td>
<td></td>
</tr>
<tr>
<td>SLE65</td>
<td></td>
</tr>
</tbody>
</table>

Other operating voltages on request.

Fusing

HygroMatik recommends the use of slow blowing up to middle time-lag main fuses.

Please note

Steam humidifier installations should incorporate an individual resilient current circuit breaker.
Maximum current draw of the StandardLine standard models and the required fusing resulting from that can be taken from the table below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Current draw [A]</th>
<th>Fusing [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE02</td>
<td>6.5</td>
<td>1x10</td>
</tr>
<tr>
<td>SLE05</td>
<td>5.4</td>
<td>3x6</td>
</tr>
<tr>
<td>SLE10</td>
<td>10.8</td>
<td>3x16</td>
</tr>
<tr>
<td>SLE15</td>
<td>16.3</td>
<td>3x20</td>
</tr>
<tr>
<td>SLE20</td>
<td>21.7</td>
<td>3x25</td>
</tr>
<tr>
<td>SLE30</td>
<td>32.5</td>
<td>3x35</td>
</tr>
<tr>
<td>SLE45</td>
<td>48.8</td>
<td>3x63</td>
</tr>
<tr>
<td>SLE65</td>
<td>70.4</td>
<td>3x80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Current draw [A]</th>
<th>Fusing [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLH03</td>
<td>9.4 - 10.2</td>
<td>1 x 16</td>
</tr>
<tr>
<td>SLH06</td>
<td>10.7 - 11.7</td>
<td>3 x 16</td>
</tr>
<tr>
<td>SLH09</td>
<td>16 - 17.5</td>
<td>3 x 20</td>
</tr>
<tr>
<td>SLH15</td>
<td>15.7 - 17.1</td>
<td>3 x 20</td>
</tr>
<tr>
<td>SLH25</td>
<td>25.9 - 28.3</td>
<td>3 x 32</td>
</tr>
<tr>
<td>SLH40</td>
<td>41.6 - 45.4</td>
<td>3 x 50</td>
</tr>
<tr>
<td>SLH50</td>
<td>51.9 - 56.7</td>
<td>3 x 63</td>
</tr>
</tbody>
</table>

7.2 Cable connections

The table below shows the number and dimensioning of the cable connections provided by the various StandardLine housing types.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>M16</th>
<th>M25</th>
<th>M25 with MSI*</th>
<th>M32</th>
<th>M40</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE02</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SLE05/10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SLH03/SLH06/09</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SLE15/20/30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SLH15/25</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SLE45/65</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*) Multiple seal insert

Characteristics of metric cable connections

<table>
<thead>
<tr>
<th>Thread</th>
<th>Wrench size [mm]</th>
<th>Cable diameter supported [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16X1.5</td>
<td>20</td>
<td>4.5 - 10</td>
</tr>
<tr>
<td>M25x1.5</td>
<td>30</td>
<td>9 - 17</td>
</tr>
<tr>
<td>M25x1.5 with MSI*</td>
<td>30</td>
<td>6 (3x)</td>
</tr>
<tr>
<td>M32x1.5</td>
<td>36</td>
<td>13 - 21</td>
</tr>
<tr>
<td>M40x1.5</td>
<td>46</td>
<td>16 - 28</td>
</tr>
</tbody>
</table>
7.3 Safety interlock

WARNING

Risk of electrical shock!
Hazardous electrical voltage!
When standard wiring was made, terminal 1 shows 230 VAC after commissioning.

Across terminal 1 and 2 the so-called safety interlock is wired. This wiring allows for integration of safety devices. In case of an open safety interlock the steam humidifier does not operate.

![Safety interlock terminals](1/2 on main PCB)

Please note

Factory setting leaves the safety interlock open!

Install contact interlocks, e.g. a max. hygrostat, vane relays, pressure controllers, air interlock devices etc. in series across terminal 1 and 2.

NOTICE

Contacts across terminals 1 and 2 must be potential free and properly rated!
Rating must comply with the control voltage in use.

Best practice implies the integration of a max. hygrostat in the safety interlock wiring to protect against over-humidification due to a r.h. sensor malfunction.

7.4 Control signal

As described in the „Unit Control“ chapter, section „Provider level submenue and its parameters“, the unit control type is determined by parameter „1-2“, „control signal“. In accordance with the control type selected, terminal wiring of the connection terminal (s. „Unit control“ chapter, section „Main PCB connections“) is to be made.

7.4.1 1-step operation

Steam humidifier operation is controlled by the contact across terminals 3 and 5 provided by the customer. This contact needs only to be low voltage proof.

![Customer-provided contact for 1-step operation](3 4 5 6 7 20 VDC)

7.4.2 Operation with an active humidity sensor or external controller

When driving the steam humidifier by an active r.h. sensor or external controller (e.g. a PLC), control signals in the range of 0...10 V, 0...20 mA or 0...140 Ohm may be applied. Each one of the signal types is connected to a dedicated terminal (see „Unit control“ chapter, section „Main PCB connections“). Reference is always to terminal 4, GND.

![Terminals for control signals](0...140 Ohm 0...20mA 0...10V GND 20 VDC)
Active r.h. sensors need an external supply voltage. For that purpose, terminal 3 has a +20 VDC offering.

7.4.3 Wiring for control signal and safety (interlock) system for multiple units

In the case of multiple units, separate humidifiers work together. The control signal and the safety (interlock) system are connected to the master unit as described above. In addition, connecting cables are established between the guiding unit and the succeeding unit(s) (provided on-site). These provide the succeeding unit with a control signal from the guiding unit and the transmitted (potential free) safety (interlock) system.

The wiring for the control signal and the safety (interlock) system must be implemented as follows for multiple units:

<table>
<thead>
<tr>
<th>Guiding unit</th>
<th>Successing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST07 1)</td>
<td>ST01 1)</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>

1) “ST0x” designates connector plugs on the mainboard
2) “K21” is the relay used for the connection of the succeeding unit

7.5 Connection diagram

Pls. find the full wiring diagram in the „Unit control” chapter, section „Main PCB connections“ of this manual.

7.6 Electrical installation check list

Check electrical installation with respect to customer-site requirements and local power supply regulations.

☑ Safety interlock properly wired across terminals 1 and 2?
☑ Supply voltage in accordance with name plate voltage rating?
☑ All electrical connections made according to the wiring diagram?
☑ R.h. sensor properly connected with respect to signal type and supply voltage (only when r.h. sensor is in use)?
☑ All screw terminal connections properly tightened?
☑ Have all electrical cable and plug connections been properly tightened?
☑ Proper unit grounding made?
8. Commissioning

WARNING

Risk of operating error!
Start-up of the unit is restricted to expert staff only (electricians or expert personnel with equivalent training).

Step 1: Check of mechanical integrity and wiring
- Open housing cover.
- Check cylinder seating.
- Check steam, condensate and drainhose clamps.
- Check that all electrical wire connections (including steam cylinder wiring) are tight and secure.

Step 2: Switching on the steam humidifier
- Switch on main breaker.
- Open water supply stopcock (operating pressure should be 1 bar min., 10 bar max.).
- Switch on unit by setting control switch to “I”.

Step 3: The unit performs a self-test and, then, commences normal operation
- During self-test, the display flashes for a couple of seconds
- On completion of the test, the software version is displayed for a short moment. Consequently, normal operation is commenced. However, steam is not produced

Step 4: Trigger steam demand
- Set control to 1-step operation, i.e. permanent steam demand, and close safety interlock.
- The water inlet solenoid valve opens and feeds water into the steam cylinder

Step 5: Monitor unit function and check for leakage
- Let unit operate for 15 to 30 minutes.
- If leaks appear, switch off the unit.

WARNING

Risk of electrical shock!
Hazardous electrical voltage!
Follow safety instructions for work on live components.

Step 6: Repair leaks
- Find leaks and eliminate.
- Check again for leaks.
- When everything is o.k., reattach housing cover.
9. Maintenance

9.1 General

For the achievement of a long unit life span, regular maintenance is a must. Maintenance works to be performed refer to unit assemblies that underlie either mechanical or electrical wear and tear, or may be impeded by residues in their proper functioning.

The steam humidifier’s performance and maintenance intervals primarily depend on the water quality encountered and the amount of steam produced. A particular water quality may shorten or lengthen maintenance intervals. The amount of residues found in the steam cylinder allows for a hint on future maintenance intervals.

Another scenario influencing the unrestricted unit availability refers to the main contactor that has a maximum number of switch cycles as indicated by its manufacturer. Unit control monitors the number of switch cycles and produces a maintenance message as soon as the max. number is reached.

Need for maintenance is indicated by illumination of the service icon in the unit control panel display. Depending on the trigger, reading value “Status” then shows a „271“ (Service Steam Amount) when a certain produced steam amount threshold preset was exceeded, or „272“ (Service Main Contactor).

Maintenance work mainly encompasses checking and cleaning all of the unit parts including the steam cylinder inside and the level control device, and a unit test run. As part of the maintenance work, screw terminals and plug connections must be checked each and every time and retightened, if required. Also, the tight fit of all of the plug connections must be ensured.

Since steam and condensate hoses are subject to wear as well, hoses must also be checked regularly.

Seals are wear parts. As such, seal integrity checks and replacement, if required, is also a part of the regular maintenance work.

9.1.1 Safety instructions for maintenance

⚠️ WARNING

Risk of electrical shock!
Hazardous electrical voltage. Unit must be switched off and protected against restart by expert staff (electricians or expert personnel with equivalent training) before any maintenance work is commenced.

⚠️ WARNING

Risk of skin burning!
Hot steam cylinder during operation and for some time afterwards. Drain steam cylinder before any maintenance work is commenced. After that, wait approx. 10 mins before starting maintenance work. Check steam cylinder temperature by cautious approximation with hand (do not touch!).

⚠️ WARNING

Risk of scalding!
Water pumped or drained from the steam cylinder may have a temperature of up to 95 °C. Wear proper PPE (Personal Protection Equipment)!

⚠️ NOTICE

Take care of ESD protection!
The electronic components of the humidifier control are very sensitive to electrostatic discharges. In order to protect these components during maintenance, steps must be taken to guard against damage from electrostatic discharge.
9.2 Maintenance framework when unit is operated with fully demineralised water and condensate

Instructions on maintenance and cleaning intervals are entirely based on empirical data.

<table>
<thead>
<tr>
<th>Cycle time</th>
<th>Maintenance work</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 weeks after initial commissioning</td>
<td>Visual inspection of electrical and mechanical connections.</td>
</tr>
<tr>
<td></td>
<td>Visual inspection of level control.</td>
</tr>
<tr>
<td></td>
<td>Visual inspection of the steam cylinder interior.</td>
</tr>
<tr>
<td>annually</td>
<td>Visual inspection of electrical and mechanical connections.</td>
</tr>
<tr>
<td></td>
<td>Visual inspection of level control.</td>
</tr>
<tr>
<td></td>
<td>Visual inspection of heater element and thermo switch</td>
</tr>
<tr>
<td></td>
<td>Visual inspection of steam cylinder interior.</td>
</tr>
<tr>
<td></td>
<td>If required, cleaning of steam cylinder, heater element, thermo switch and level control followed by the replacement of all sealing.</td>
</tr>
</tbody>
</table>

9.3 Maintenance when unit is operated with tap water or partially softened water

No precise maintenance intervals can be specified because these always depend on water quality and the amount of steam generated. It is advisable to adjust the frequency of maintenance to the specific operational experience. HygroMatik recommends to check the opened steam cylinder 1 or 2 weeks after initial commissioning in order to quantify the amount of residue produced so far, allowing for determining future maintenance intervals and/or the adjustment of blow-down cycles possibly required.

Blow-down cycles

The vaporisation process causes hardness builders (calcium) in form of solids of various compositions to fall out within the steam cylinder. Cyclic blow-down by means of a powerful blow-down pump followed by fresh water refills remove parts of this solid built-up.

SuperFlush

Blow-down efficiency may be increased by use of the SuperFlush retrofit kit that boosts the blow-down effect in that it creates a vortex flow in the strainer basket.

Water quality

When tap water is used, it must be taken into account that cleaning intervals shorten as the carbonate hardness level increases. As a general rule, it is preferable to operate the unit with fully demineralized water since operation will not be affected by mineral deposits and flushing loss will be minimized.

Please note

Possibly, maintenance intervals may be extended by moderately increasing the blow-down cycle rate. Please consult your expert dealer.
9.4 Removing and cleaning the steam cylinder

CAUTION

Risk of eye injuries!
The clips that fix the steam cylinder halves have sharp edges and can jump off during dismantling.
Eye injuries possible.
Wear proper PPE (Personal Protection Equipment)!

Steam cylinder removal

- Set control switch to „II“ position for residual water draining
- When cylinder is empty, set control switch to „0“ position
- Disconnect unit from power supply and secure against reconnection
- Remove unit housing cover

- Remove water sensor hose from cylinder top.
- Remove SuperFlush solenoid hose from cylinder bottom (if applicable).
- Remove steam hose from steam hose adapter.

If the steam hose is not to be disconnected, the steam hose adapter with the steam hose still attached may be detached from the steam cylinder as shown in the next figure.
Push clip onto adapter outside of unit housing

Remove clip from steam hose adapter

Separate connector halves

Remove cylinder flange clamps

Lift steam cylinder from cylinder base

Separate cylinder halves

Remove used o-ring
Reinstallation

- Reattach level control hose to cylinder cover.
- Reattach SuperFlush solenoid hose (if applicable) to steam cylinder bottom stub.

- Insert new o-rings in steam hose adaptor and cylinder base.
- Insert new o-ring.
- Place cylinder vertically in cylinder base.
- Join cylinder halves and affix with clamps.
- Reconnect connector halves.
- Remove used o-rings from steam cylinder top and cylinder base.
Attach steam hose adaptor to cylinder

Affix steam hose adaptor with clip

Check for leakage in relevant areas

» Reattach unit housing cover

Open water supply

Activate main circuit breaker
9.5 Steam cylinder and cylinder base cleaning

Removal of the steam cylinder is described in the „Removal and reinstallation of the steam cylinder“ section.

NOTICE

Risk of material damage!
Excessive force when cleaning the cylinder or the heater element(s) may harm these device parts.

NOTICE

Risk of functional disruption!
Use descaler or cleaning detergents only for cylinder and heater element cleaning. Do not introduce in cylinder base or apply to hoses!

Prior to restarting the unit, make sure that the device assemblies in question are thoroughly flushed or rinsed.

Remove all deposits. Small amounts of scale deposits on the heater element(s), however, are harmless.

Steam cylinder cleaning

Clean cylinder inside

Clean both strainers in cylinder

Cylinder base cleaning

Just as the cylinder, the cylinder base and its connection joints must be checked for deposits and cleaned, if required.
9.6 Level control device cleaning

The level control device is accessible only after removal of the steam cylinder.

» Disconnect hoses from level control device connection stubs on upper and lower side

» Remove the 4 screws securing the metallic cover plate of the level control device and the device as such against the unit rear wall. Memorize ground wire attachment position (under lower left hand side screw).

» Remove level control device from unit housing.

» Unclip level control device enclosure cap with a flick of the thumb and remove.

» Take out o-ring and dispose of.

» Make visual inspection of level control device enclosure interior and clean, if required. Scratch out any deposits, if present.

» Inspect both level control connection hoses and clean, if required.

» Insert new o-ring.

» Re-attach enclosure cap.

» Align metallic plate with level control device enclosure mounting holes and insert screws in upper left and lower right position. Reintroduce level control device into humidifier housing and loosely affix to unit rear wall with the 2 screws.

» Insert the 2 screws remaining into the open level control device enclosure mounting holes while positioning the ground wire connection eyelet under the lower left screw.

» Handtighten all of the screws.

Please note

A functional check of the level control device may only be accomplished while the device is installed into the unit!
9.7 Heater element replacement

Removal

» Remove and open steam cylinder as described in the „Removing and cleaning the steam cylinder“ section.

» Disconnect heater wiring connector on partition wall separating electronic compartment.

» Separate thermo switch capillary tube from heater element(s) by detaching the retainer clips.

» Remove wiring of the heater element(s) in question from connector terminals (mark positions for reclamping).

» Unscrew heater element fixing nut(s) from cylinder cover.

» Remove adjusting washer and grounding lug/lock washer (if present) and pull heater element/s downward out of steam cylinder cover.

» Clean the sealing surface on the underside of the cover around the area where the new heater element will be installed.

Reinstallation

» Install replacement heater element(s) (with sealing) while considering the correct sequence of all of the mounting parts. Ensure proper grounding and tighten nut(s).

» Insert heater element wires into the terminals of the wiring connector following the markings made when dissembling. Polarity is not an issue.

» Refit thermo switch capillary tube to heater element(s) using retainer clips.

» Reassemble steam cylinder and reinstall in humidifier housing as described in the „Removing and cleaning the steam cylinder“ section.

9.8 Thermo switch replacement (for heater elements)

Removal

» Remove and open the steam cylinder as described above in “Removing and cleaning the steam cylinder” section.

» Detach capillary tube (T) retainer clips from heater element(s).

» Separate capillary tube from heater element(s) (4).

» Unscrew the two screws holding thermo switch (O) in place.

» Pull out thermo switch (O) upwards off steam cylinder cover (R).

NOTICE

Risk of material damage!

Do not buckle thermo switch capillary tube!
Reinstallation

» Install replacement thermo switch with a new sealing.

» Properly connect the capillary tube to the heater element. In case of humidifiers with two or more heating elements, the capillary tube is attached to two heating elements.

» Reassemble steam cylinder and reinstall in humidifier housing as described in the „Removing and cleaning the steam cylinder“ section.

9.9 Releasing a thermo switch that has triggered

To protect the steam humidifier against thermal overload, the unit is equipped with one or two thermo switches, depending on the unit capacity. Mounting positions for the thermo switches are on the cylinder cover. One of the thermo switches (or „the“ one, in case of only one thermo switch present) features a capillary tube for thermal coupling to the heater element. Additionally, the solid state relay is protected with a bi-metal switch attached to the heat sink to prevent damages caused by inadequate ventilation through e.g. covered vents.

From an electrical point of view, all of the thermo switches are connected in series. In case of one of the thermo switches triggering due to a temperature too high, the main contactor K1 drops, while the electronic control enters fault state „120“, i.e. „thermo switch fault“.

In case of one of the thermo switches triggering repeatedly, the reason for this must be identified prior to further unit usage.

Thermo switch(es) on steam cylinder cover.

After the unit has cooled down, the thermo switch that has triggered may be identified by passage measurement, as long as it is a thermo switch on a steam cylinder. Unblocking the thermo switch is accomplished as follows:

Slightly push down the red button (s. above section) protruding a few milimeters from its holder. This will make the button return to its original position and unblock the mechanism.

Relasing a thermo switch does not erase the fault message in the control fault memory.

Thermo switch on solid state relay

The thermo switch attached to the solid state relay is a bi-metal switch without an unblocking feature. Instead, after cool-down, the switch will be unblocked automatically. Restarting the steam humidifier is only possible after cool-down.

9.10 Inspection of wiring connections and heater element wiring

Risk of functional disruption!
Risk of material damage!

Loose cable connections may result in increased transition resistance and contact area overheating.

» Check all cabling terminals and plugs for tight seating. Plugs must sit on their respective contacts as far as they will go.

» Check heater element wiring for damaged insulation
9.11 Removal and reinstallation of the solenoid valve including fine filter cleaning

Removal

» Shut off water supply and disconnect tap water hose cap screw connection.
» Remove connecting hose (20) from solenoid valve.
» Detach electrical cable connector from solenoid valve (25).
» Unscrew solenoid valve mounting screws.
» Remove solenoid valve from housing bore.

Fine filter cleaning

» Remove fine filter from solenoid valve tap water connection side and clean under running water.

Reinstallation

» Reinsert fine filter into solenoid valve.
» Reinsert solenoid valve with seal in unit housing bore.
» Bolt-down solenoid valve.
» Reestablish tap water connection.
» Reconnect electrical cable to solenoid valve.
» Reattach connecting hose (20) to solenoid valve using clamp.
» Turn on water tap.
» Switch on unit and check for leakages after 15 to 30 mins of operation.

⚠️ WARNING

Risk of electrical shock! Hazardous electrical voltage! Follow safety instructions for work on live components. Leakages may invoke leak currents.

» In case of leakage turn off power supply and secure against being switched on again.
» Find leakage and eliminate.
» Check again.
9.12 Cleaning of blow-down pump

Removal and cleaning

» Remove steam cylinder as described in „Removal and reinstallation of steam cylinder“ section.
» Detach adapter (30) from pump (32).
» Detach electrical cable from pump.
» Unscrew mounting screws from housing bottom plate (safe vibration buffer, bolts and washers for reinstallation) and pull pump out of cylinder base (37).
» Open pump bayonet lock.
» Remove residues from pump and drain hoses (replace O-ring if required).

Reinstallation

» Moisten O-ring (33) and insert into cylinder base (37) horizontal stub.
» Push pump back into cylinder base and bolt to bottom plate encompassing the vibration buffer and washers saved during removal.
» Moisten O-ring (31) and insert into adapter.
» Slide adapter (30) onto pump stub.
» Refit electrical cable to pump connector (no polarisation).
» Let unit run for 15 to 30 mins, then check for leakages.

» in case of leakage turn off power supply and secure against being switched on again.
» Find leakage and eliminate.
» Check again.

WARNING
Risk of electrical shock!
Hazardous electrical voltage!
Follow safety instructions for work on live components.
Leakages may invoke leak currents.

9.13 Inspection of hoses
Since steam and condensate hoses are prone to wear as well, those hoses should undergo regular checks as well.

9.14 Functional check

» Run the system with maximum output for a couple of minutes
» Check all safety devices.
» Check hose connections and seals for leakage.
10. Dismantling

Once the steam humidifier will no longer be used, dismantle (demolish or scrap) it by following the installation procedures in reverse order.

⚠️ WARNING ⚠️

Dismantling of the unit may only be performed by qualified personnel. Electrical dismantling may only be performed by trained electricians.

Please note

Obey the safety guidelines in section “Safety Instructions,” especially the guidelines for disposal.
11. Unit Control

11.1 General description

Operation of the HygroMatik steam humidifier is under microprocessor control.

A control switch can be found on the device front panel featuring two positions besides the „Zero“-position for a switched-off device.

„Pos. I“ : The unit is switched on
„Pos. „II“ : Cylinder water is manually drained

For controlling the unit a control panel featuring a 3-digit display and a number of icons plus 4 touch keys is integrated in the unit front panel. Controlling the unit by software using the modbus RTU protocol is also possible. On request, modbus documentation is available from your expert dealer.

Mainboard

The complete control logic including the relays for basic operation is realised on a compact PCB that is mounted on the vertical separating wall between the unit chambers. All connections on the PCB are distinctive in order to allow for easy exchange of the board in case of maintenance.

On the main PCB, two vertically mounted fuse holders with bayonet fitting encorporate 1.6 A fast-blow fine wire fuses (F1 and F2 for L and N, s. section „Basis PCB connections“ in this chapter).

Safety systems

Besides the common external safety interlock (implemented by means of a switching contact or a through a building control system), the following safety is encorporated in the unit:

The electric heater steam humidifier is ther- mically controlled at two spots minimum. Besides the thermo switch located on top of the steam cylinder and meant for overheating avoidance of the electrical heater element, the solid state relay also is equipped with a thermo switch (higher output units feature 2 thermo switches in the cylinder cover). In case of one of the thermo switches being triggered, the main contactor is deenergised. The thermo switches on the steam cylinders may be reset mechanically after cool-down. The thermo switch attached to the solid state relay heatsink, however, is a bi-metal device. As such, it is released automatically after cool-down.
An other safety measure is the steam cylinder minimum water level control. For heater element protection and thermal overload risk avoidance, no heater element drive enabling is issued in case of minimum water level underrun.

Intrinsic safety

StandardLine steam humidifiers comply with intrinsic safety requirements in that the electrical power supply may be cut by two devices. In case of the electric heater steam humidifier, these devices are the main contactor and the solid state relay.

Please note

For electrical connection of the steam humidifier a residual current circuit breaker is recommended.
11.1.1 Wiring Diagrams

- The printed version of the manual does not include connection diagrams, as these are included in the scope of delivery. Please keep them carefully for future reference.
- The PDF / online version of the manual shows the connection diagrams in the appendix.

Structure of the circuit diagram designation

To help you select the correct circuit diagram (only applies to PDF / online version), please note the structure of the circuit diagram nomenclature described here:

<table>
<thead>
<tr>
<th>1: Type of device</th>
<th>2: Unit capacity (kg/h)</th>
<th>3: Control</th>
<th>4: Voltage specification (V) / phases</th>
<th>5: Country code / Control voltage</th>
<th>6: Control voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLE: FlexLine Electrode</td>
<td>FLH: FlexLine Heater</td>
<td>T=Touch / TSPA=TouchSpa</td>
<td>A = 380-415/ 3 B = 220-240/3 C = 208 - 240/3</td>
<td>A= HVAC Standard, C= UL/CSA</td>
<td>00 = Internal</td>
</tr>
<tr>
<td>FLP: FlexLine Prozess</td>
<td>SLE: StandardLine Electrode</td>
<td></td>
<td>G = 440-480/3 H = 575-600/3 K = 490-510/3</td>
<td>E= SPA Standard</td>
<td>10 = separat</td>
</tr>
<tr>
<td>SLH: StandardLine Heater</td>
<td></td>
<td></td>
<td>M = 220-240/1 O = 208-240/1 Q = 220-240/2</td>
<td>F= KITs Standard</td>
<td>20 = Transformer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R = 380-415/2 Y = 660-690/3</td>
<td>J= Ship configuration UL/CSA</td>
<td>50 = as 00 with HyFlow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N= Ship configuration SPA Standard</td>
<td>60 = as 10 with HyFlow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R= Ship configuration HVAC Standard</td>
<td>70 = as 20 with HyFlow</td>
</tr>
</tbody>
</table>
11.1.2 Mainboard inputs and outputs

11.1.2.1 Customer side interfaces

Inputs

ST08:
- Control signal 0...10 VDC
- Control signal 0...20 mA
- Control signal 0...140 Ω

Outputs

ST03:
- Potential-free programmable NC and NO contacts, (factory assignment is „collective fault“)

ST10.1:
- Connection option für 2 additional relays of the top head type (K20, K21) (ordering option). With the SLH40 and SLH50 units, connector ST10.1 is used already for the ex-factory relay K20. In this case, an ordering option is available comprising K21 only.

ST07:
Control signal 0...10 VDC (max. 8 mA)

ST08:
- +20 VDC humidity sensor supply voltage (max. 20 mA)

11.1.2.2 System interfaces

Power supply and safety interlock

ST01:
- 4-pin plug connection with screw terminal adaptor for L and N power connection and safety interlock („Terminals 1/2“)

Inputs

ST09:
- Filling level sensor

ST04-B:
- Galvanically isolated thermo switch input (via optical coupler)
- Dielectric strength 600 VAC

Outputs

ST04-A:
- Main contactor(s)

ST05:
- Blow-down pump

ST06:
- Inlet solenoid valve

ST07:
- Solid state relay control signal (PWM), 20 mA max.

Bidirectional

ST12.1:
- Control panel serial interface

ST 13:
- RS485 interface adapter PCB socket
11.2 Control operation

11.2.1 Principal user guidance

On powering up the steam humidifier, the software version is shown in the display for a few seconds. In normal operation the display then shows actual steam output as a standard display. When a key is pressed the first reading in a list of reading and input values is output. The complete list may be visualized by scrolling using the "A/V" keys. Control-wise, the unit is in "user level" (see next section).

By means of inputting a 2-digit code, access to "Provider level" is possible (for input code, see table in section "Provider level submenus and relating parameters"). The provider level parameters are functionally grouped in submenus (1) to (6). The code input is reset to its standard ("000"), should no keystroke occur within 3 minutes.

11.2.2 Menu structure

Overview on menu structure

User level
- Standard display
 - Read values
 - Fault indication
 - Code input
 - after code input
 - Parameter selection

Provider level
- Parameter selection
 - Control (1) *
 - Blow-down (2)
 - Service (3)
 - Governing (4)
 - Functions (5)
 - Settings (6)

*) numbers in parenthesis are group numbers
11.2.3 Menu tree

User level

r01 Status	r02 Error	r03 Act. steam output [kg/h]	r04 Act. steam output [lb/h]	r06 Filling level [mm]
r07 Internal demand [%]	r08 External demand [%]	r09 Power limitation [%]	r10 Set point r.h. [%]	r11 R.h. actual value [%]
r12 External signal [%]	r13 V-Signal	r14 mA-Signal	r15 Ω-Signal	

P00 Code level (2 digits)

PAr Parameter selection

Provider level

1-Control

1-1 Power reduction
1-2 Control signal
1-3 Correction of input stage
1-4 Filter input stage

2-Blow-down

2-1 Corr. partial blow-down
2-2 Correction full blow-down
2-3 Switch stand-by blow dwn
2-4 Duration stand-by bl. dwn
2-5 Switch dead leg flushing
2-6 Interval dead leg flushing
2-7 Duration dead leg flushing
2-8 Blow-down without K1

3-Service

3-1 Reset service interval
3-2 Reset K1 service Interval
3-3 Service interval
3-4 Service interval

4-Governing

4-1 Set point r.h. | 3)
4-2 Gain PI controller | 3)
4-3 Integral PI controller | 3)

5-Functions

5-1 Switch stand-by heating
5-2 Stand-by heating interval
5-3 Stand-by heating on
5-4 Basic relay
5-5 Optional Relay_K20
5-6 Modbus address
5-7 Optional Relay_K21

*) contained in SLH40 and SLH50 ex-factory

6-Settings

6-1 Buzzer
6-2 Time-out
6-3 Activate imperial units

1) only when SI system was selected
2) only when imperial system was selected
3) only when „PI controller“ was selected
4) only shown after code „10“ input
5) direct access when on provider level

Λ V designates scrolling with control panel keys
11.3 The control panel

The control panel comprises 3 sections:
• the ESC, SET, ▲,▼ control keys
• the 3-digit 7-segment display
• dedicated icons for operating status indication

Please note
A flashing icon always indicates a faulty situation!

Exception: When switching the unit on, the complete display flashes 4 times. Then, the power-on-LED blinks while the device self test is run.

The control keys enable navigation in the menus and submenus. Their function is as follows:
 „ESC“: cancellation or return to previous level
 „▲/▼“: move up/down within a menu, submenu or selection list.
 „SET“: accept and store a selected setting.

The 3-digit 7-segment-display serves for outputting of operational and input data as well as error code presentation. When control software expects an input the digits are blinked. Display semantics are determined by lightening-up of one or more icons related to a specific operational situation or device control environment.

<table>
<thead>
<tr>
<th>Icons state table</th>
</tr>
</thead>
<tbody>
<tr>
<td>permanently lit</td>
</tr>
<tr>
<td>Steam production active</td>
</tr>
<tr>
<td>Main contactor active</td>
</tr>
<tr>
<td>Filling active</td>
</tr>
<tr>
<td>Blow-down active</td>
</tr>
<tr>
<td>Steam production active</td>
</tr>
<tr>
<td>Maintenance required</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Safety interlock closed</td>
</tr>
<tr>
<td>Virtual safety interlock closed by software enabling</td>
</tr>
<tr>
<td>Control active</td>
</tr>
</tbody>
</table>
11.4 Navigation within a menu

User level entry

Standard display during normal operation is actual steam output in the selected dimension ([kg/h] or [lbs/h], respectively. By pressing any key, user level comprising a reading value index (pointer) selection level and the reading values as such is entered.

„r01“ is displayed indexing the first reading value.

Reading value display

By scrolling using the „↑/↓“ keys, the reading value indexes „r01“ to „r15“, code entry „P00“ (s. below) and parameter selection „PAr“*) may be addressed. The actual reading value content is output on pressing the SET key after selection of one of the reading value pointers r01 to r15.

Use the ESC key for return to the reading value index level that allows for addressing further reading values.

„P00“ allows for inputting a code for provider level entry that supports changing of the parameters (s. next section). This function is not meant for usage by the steam humidifier user.

*) „PAr“ ist only presented when a „10“ was input as the „P00“ setting value for access to provider level. When „PAr“ is confirmed with the SET key, parameter group selection is supported without the need for inputting the access code again.

Provider level code entry and setting a parameter

» Using the „↑/↓“ keys, scroll until „P00“ is displayed and confirm with the SET key. „00“ is displayed.

» Increase the display to „10“ using the „↑/↓“ keys and confirm with the SET key („10“ is the access code for the provider level). „1-“ is now displayed for selection of one of the parameter groups (1) to (6).

» Confirm parameter group (1) with the SET key or make an other selection with the „↑/↓“ keys and then confirm. The display will now show a „1“ in the right digit position for addressing the parameter index (e.g., „2-1“).

» Confirm selection with the SET key or vary selection with the „↑/↓“ keys and then confirm.

Use the ESC key for return to the previous input level.
11.5 Tabular representation of reading value list and provider level submenus

For a detailed description, pls. refer to the respective sections within this chapter.

11.5.1 The reading value list

From normal operation, the user may access the reading value index „r01“ (Status) by pressing any key.

By scrolling using the „\downarrow/\uparrow“ keys the reading and setting values indicated in the table below may be addressed. To output the value content, the SET key must be pressed first.

<table>
<thead>
<tr>
<th>Reading value index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r01</td>
<td>Status</td>
</tr>
<tr>
<td>r02</td>
<td>Fault</td>
</tr>
<tr>
<td>r03</td>
<td>Actual steam output [kg/h]</td>
</tr>
<tr>
<td>r04</td>
<td>Actual steam output [lb/h] (only when imperial units were selected)</td>
</tr>
<tr>
<td>r06</td>
<td>Filling level [mm]</td>
</tr>
<tr>
<td>r07</td>
<td>Internal demand [%]</td>
</tr>
<tr>
<td>r08</td>
<td>External demand [%]</td>
</tr>
<tr>
<td>r09</td>
<td>Power limitation [%]</td>
</tr>
<tr>
<td>r10</td>
<td>Set value r.h. [%] (only when PI controller was selected)</td>
</tr>
<tr>
<td>r11</td>
<td>Actual value r.h. [%] (only when PI controller was selected)</td>
</tr>
<tr>
<td>r12</td>
<td>External signal [%]</td>
</tr>
<tr>
<td>r13</td>
<td>V-Signal</td>
</tr>
<tr>
<td>r14</td>
<td>mA-Signal</td>
</tr>
<tr>
<td>r15</td>
<td>Ω-Signal</td>
</tr>
<tr>
<td>P00</td>
<td>Code level („0“, „10“)</td>
</tr>
<tr>
<td>PAr</td>
<td>Parameter group selection</td>
</tr>
</tbody>
</table>
11.5.2 Provider level submenus and relating parameters

Detailed parameter descriptions may be found in the section “Detailed parameter description” further down in this chapter. The “Setting options” column indicates the presets available or the range of values to be chosen from. „Fs“ stands for „Factory setting“.

Submenu „Control“ (Group1)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Steam output max. [%]</td>
<td>25 ... 100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fs*) = 100</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Control signal</td>
<td>0= not valid</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1= ext. controller, 0 ... 10 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2= ext. controller, 0 ... 20 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3= ext. controller, 0..140 Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4= PI controller, 0 ... 10 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5= PI controller, 4 ... 20 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6= PI controller, 0 ...140 Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7= 1-step</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8= Modbus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fs = 1</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>Correction input stages [%]</td>
<td>-5.0 ... +5.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fs = 0</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>Filter input stage</td>
<td>0=light, 1=strong</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fs = 0</td>
<td></td>
</tr>
</tbody>
</table>

*) Fs = Factory setting
Submenu „Blow-down“ (Group 2)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Correction partial blow-down</td>
<td>-5...+5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 0)</td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>Correction full blow-down</td>
<td>-5...+5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 0)</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>Switch stand-by blow-down</td>
<td>0=off, 1=on</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 1)</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>Waiting time stand-by blow-down [h]</td>
<td>0.1...48.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 24.0)</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>Switch dead leg flushing</td>
<td>0=off, 1=on</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 0)</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>Interval dead leg flushing [h]</td>
<td>0.1...96.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 24.0)</td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>Duration deadleg flushing [s]</td>
<td>1...600</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 90)</td>
<td></td>
</tr>
<tr>
<td>2-9</td>
<td>Steam-down time</td>
<td>0...250</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WV=240)</td>
<td></td>
</tr>
</tbody>
</table>

Submenu „Service“ (Group 3)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Reset service interval steam amount</td>
<td>0=no, 1=yes</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 0)</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>Reset K1 service interval</td>
<td>0=no, 1=yes</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 0)</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>Service interval [t]</td>
<td>0...90.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = \text{device dependant})</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Service interval [tn. sh.]</td>
<td>0...99.9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = \text{device dependant})</td>
<td></td>
</tr>
</tbody>
</table>

Submenu „Governning“ (Group 4)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Set point r.h. [%] (PI controller only)</td>
<td>5...99.9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 50.0)</td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>Gain [%] (PI controller only)</td>
<td>0.1...99.9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 5.0)</td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>Integral [%] (PI controller only)</td>
<td>0...100.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fs = 10)</td>
<td></td>
</tr>
</tbody>
</table>
Submenu „Functions“ (Group 5)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Switch stand-by heating</td>
<td>0=off, 1=on</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 0$</td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>Interval stand-by heating [min]</td>
<td>$Fs = device dependant$</td>
<td>10</td>
</tr>
<tr>
<td>5-3</td>
<td>Stand-by heating [s]</td>
<td>$Fs = device dependant$</td>
<td>10</td>
</tr>
<tr>
<td>5-4</td>
<td>Basic relay</td>
<td>0 = collective fault, 1 = stand-by, 2 = no demand, 3 = humidifying, 5 = remote off, 30 = filling off, 31 = filling on, 37 = HyCool, 60 = Blow-down off, 61 = Blow-down on, 62 = Partial blow-down, 63 = Full blow-down, 66 = max. level, 67 = Stand-by blow-down, 68 = Dead leg flushing, 69 = Start-up blow-down, 270 = Collective Service</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 0$</td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>Relay_K20</td>
<td>same as for basic relay</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 270$</td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>Modbus address</td>
<td>0..255</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 1$</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>Relay_K21</td>
<td>same as for basic relay</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 270$</td>
<td></td>
</tr>
</tbody>
</table>

*) in the SLH40 and SLH50 units, Relay K20 is programmed with „120“ ex-factory for stage 2 switching. This allocation can not be changed.

Submenu „Settings“ (Group 6)

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Setting options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Buzzer</td>
<td>0=off, 1=on</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 0$</td>
<td></td>
</tr>
<tr>
<td>6-2</td>
<td>Time-Out (return to standard display) [min]</td>
<td>0 ... 60</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 2$</td>
<td></td>
</tr>
<tr>
<td>6-3</td>
<td>Activate imperial units</td>
<td>0 = SI units, 1 = imperial units</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Fs = 0$</td>
<td></td>
</tr>
</tbody>
</table>
11.6 Exemplary variation of a parameter setting

Example: Control signal is to be changed from „Ext. controller, 0...10V“ („1-2“ = „1“) to „PI controller, 0...10V“ („1-2“ = „4“).

Please note
The steps below make an essential change to a control parameter. If this is not intended, be sure to reestablish the original setting after changing it for exercising purposes.

» In normal operation, press any key to access the reading value list. „r01“ is displayed.
» Scroll from „r01“ to „P00“ (Code input).
» Press SET key. Display now shows a flashing „Zero“ for code level „0“ (user level) and input readiness.
» Using the „Λ/´V“ keys, change the display to „10“.
» Press the SET key. Provider level is now entered. „1-“ is displayed as the first parameter group to be changed.
» Since the parameter to be changed is in this group already, group confirmation can be made immediately with the SET key.
» Scroll with the „Λ/´V“ keys to the „1-2“ position and confirm with the SET key. The parameter setting „1“ (external controller, 0...10 V) is displayed and may be changed.
» Change the setting to „4“ (PI controller, 0...10 V) with the „Λ/´V“ keys and confirm with the SET key.
» Pressing the ESC key twice brings the display back to standard display (i.e. actual steam output).

These steps are exemplary. In the same way, selection and variation of all of the other parameters may be accomplished.
11.7 Detailed description of the user level reading values and settings

<table>
<thead>
<tr>
<th>Reading value</th>
<th>Code</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main functions category</td>
<td>00</td>
<td>Start</td>
<td>Humidifier is in startup phase after a cold start. The Power-ON-LED flashes.</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Stand-by</td>
<td>Safety interlock is open (safety interlock icon in display is not lit). No steam is produced. In case of the safety interlock being opened by software, status „05“ (Remote off) is displayed instead of „01“.</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>No demand</td>
<td>Demand from external controller or active humidity sensor is below switch-on threshold of the steam humidifier. No steam is produced (while the safety interlock is closed). The demand icon in the display is not lit.</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Humidify</td>
<td>Steam is produced when demand is generated by a Hygrostat or an external controller. With a PI controller setting, an input signal from the active humidity sensor is required. (Safety interlock must be closed).</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>Remote off</td>
<td>Safety interlock was opened via Modbus (e.g. by a building control system instruction).</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>No Modbus</td>
<td>When 1-2 = „Modbus“ is selected, demand messages are required on a regular base. In case of no demand within a 20 s time frame, „No Modbus“ is shown as the device status and steam production is stopped (for details, see dedicated Modbus documentation available from HygroMatik GmbH).</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>Stand-by heating interval</td>
<td>When in stand-by heating mode, status code 07 is displayed during steam production.</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>Stand-by heating pause</td>
<td>When in stand-by heating mode, status code 08 is displayed when no steam is produced.</td>
</tr>
<tr>
<td>Filling category</td>
<td>30</td>
<td>Filling</td>
<td>Filling is active via solenoid valve. The filling icon in the display is lit.</td>
</tr>
<tr>
<td>Reading value</td>
<td>Explanation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blow-down category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Initial blow-down</td>
<td>After switching the device on, a blow-down sequence is run with the parameter set for partial blow-down.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 Partial blow-down</td>
<td>A partial blow-down is run in order to achieve cylinder water concentration reduction. In order to dilute the concentration of the cylinder water, the control performs regular partial blow-downs. The blow-down icon in the display is lit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blow-down category (contd.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 Full blow-down</td>
<td>Full blow-down is run (steam cylinder is completely drained). The blow-down icon in the display is lit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 Max. level</td>
<td>Max. allowable water level in steam cylinder was overrun.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 Stand-by blow-down</td>
<td>In case of a safety interlock open for a longer period of time, a full blow-down is run automatically after a time preset in order to avoid stagnant water in the steam cylinder. The blow-down icon in the display is lit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 Dead leg flushing</td>
<td>Special blow-down mode for flushing dead leg tubing. Solenoid valve and blow-down pump are activated simultaneously in case of a no demand situation for a certain period of time. The blow-down icon in the display is lit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 Partial blow-down waiting</td>
<td>Device will start partial blow-down with next filling step.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81 Full blow-down waiting</td>
<td>Device will start full blow-down with next filling step.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271 Service steam amount</td>
<td>The service threshold for the steam amount produced as preset in 3-3 (SI units) or 3-4 (imperial units) was exceeded. The service icon in the display is permanently lit for the time the message is active. The status message may be reset by setting parameter 3-1 to „1“.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 272 Service main contactor K1 switching cycles | The number of main contactor switching cycles predefined by the manufacturer was met. A main contactor replacement is advisable. The service icon in the display is permanently lit for the time the message is active. For resetting the status message, parameter 3-2 must be set to „1“.
<p>| Fault category | |
| 999 Fault | A fault was detected. Operation has ceased. An error code may be read out. Some certain faults also make an icon in the display blink. |
| r02 Error (only shown when a fault has occured) | The error code related to the fault is displayed (steam production is stopped whenever a fault occurs). Error codes are described in the „Trouble shooting“ chapter of this manual. |</p>
<table>
<thead>
<tr>
<th>Reading value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>r03 Actual steam output</td>
<td>Amount of current steam production value [kg/h]</td>
</tr>
<tr>
<td>(SI units)</td>
<td></td>
</tr>
<tr>
<td>r04 Actual steam output</td>
<td>Amount of current steam production value [lb/h]</td>
</tr>
<tr>
<td>(imperial units)</td>
<td></td>
</tr>
<tr>
<td>r05 fillig level</td>
<td>Indication of the water level in the cylinder [mm]</td>
</tr>
<tr>
<td>r07 Internal control sig-</td>
<td>The internal signal for controlling the steam humidifier electrical</td>
</tr>
<tr>
<td>nal</td>
<td>power delivery is displayed. [%]. This reading is influenced by the</td>
</tr>
<tr>
<td></td>
<td>control curve and a power limitation preset</td>
</tr>
<tr>
<td>r08 External demand</td>
<td>External controller control signal is displayed [%]</td>
</tr>
<tr>
<td>(only with ext. controller)</td>
<td></td>
</tr>
<tr>
<td>r09 Power limitation</td>
<td>Power limitation as a percentage of max. output as preset in parameter „1-1“ is displayed [%]</td>
</tr>
<tr>
<td>r10 Set point r.H. (only when PI controller was preset)</td>
<td>R.h. nominal value as preset in parameter 4-1 is displayed [%]</td>
</tr>
<tr>
<td>r11 Actual value r.h. (only when PI controller was preset)</td>
<td>Actual value of r.h. is displayed [%].</td>
</tr>
<tr>
<td>r12 External signal</td>
<td>External signal [%]</td>
</tr>
<tr>
<td>r13 V-Signal</td>
<td>Input signal measured at terminal ST805 [V]</td>
</tr>
<tr>
<td>r14 mA-Signal</td>
<td>Input signal measured at terminal ST806 [mA]</td>
</tr>
<tr>
<td>r15 Ω-Signal</td>
<td>Input signal measured at terminal ST807 [Ω]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00 Code level</td>
<td>Allows provider level access by code input (Code „10“) or limitation to user level (Code „0“). Provider level is exited automatically after 10 mins without a keystroke.</td>
</tr>
<tr>
<td>PAr Parameter selection</td>
<td>Allows selection of parameter group and of a specific parameter within a group.</td>
</tr>
</tbody>
</table>
11.8 Detailed parameter descriptions

<table>
<thead>
<tr>
<th>Group</th>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1-1</td>
<td>Steam output limitation</td>
<td>Steam output limitation allows scaling down the max. (steam) output within a range of 25 to 100 %, which may be necessary for a better control performance. The actual steam output is determined by the control signal. The steam output can be set to a value between 25% and 100% of nominal output using the steam generation output limitation. The actual steam output released depends on the control signal. Limitation of the steam output may be needed for better control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-2 Control signal This parameter tells the unit control software what kind of control signal is wired. Also, the control characteristic is defined. These are the setting options:</td>
</tr>
</tbody>
</table>
| | | | 1 = external controller, 0...10 V
2 = external controller, 0...20 mA
3 = external controller, 0...140 Ω
4 = PI controller, 0...10 V
5 = PI controller, 4...20 mA
6 = PI controller, 0...140 Ω
7 = 1-step
8 = Modbus |
| | 1-3 | Correction of input stages | This parameter allows for an active humidity sensor calibration in the range from -5% r.h. to +5% r.h. Using this parameter, you can calibrate the active humidity sensor at terminals 3-5 in a range from -15% RH to +15% RH. |
| | 1-4 | Filter input stage | This parameter allows for switching the damping of the input low pass filter from „light” to „strong”. With a capacitive humidity sensor, increasing the input damping is meaningful for improving the signal-to-noise ration and for reducing the oscillating tendency. |
| **Blow-down** | 2-1 | Correction partial blow-down | In case of high electrical conductivity of water or excessive maintenance effort, increasing the blow-down frequency may be meaningful. When conductivity is low, however, a lower blow-down frequency may be adequate. To cope with different water qualities, blow-down rates may be adapted within a range of 10 stages (factory presetting is „0”).
Increase blow-down rate: settings up to +5.
Decrease blow-down rate: settings up to - 5.
A blow-down rate too low will lead to significant wear and tear and will also increase the maintenance effort required.
Pls. note: a „-5“ setting will shut off blow-down completely! |
Blow-down (contd.)

<table>
<thead>
<tr>
<th>Group</th>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blow-down</td>
<td>2-2</td>
<td>Correction full blowdown</td>
<td>see correction partial blow-down</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>Switch stand-by blow-down</td>
<td>Should steam humidifier operation be prospectively halted for a longer period of time, blowing-down the cylinder water is advisable in order to comply with the VDI 6022 hygiene regulations prescribing the prevention of microbial contamination of residual water. Parameter 2-3 is the switch to activate and de-activate the stand-by blow-down function. When activated, a full blow-down is run after a waiting time that was determined by setting parameter 2-4 to the value in question. For stand-by blow-down to become effective, the unit control switch must remain in the „On“- position („I“).</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>Waiting time stand-by blow-down</td>
<td>Determines the waiting time until the cylinder water is fully drained to counteract contamination when no steam is produced for a lengthy period of time (factory setting is 24 hours).</td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>Switch dead leg flushing</td>
<td>When parameter 2-5 = „1“, for flushing of the supply line, solenoid valve and blow-down pump are simultaneously activated after the time preset in parameter 2-6 and for the duration of time preset in 2-7. In order for this to work, the safety interlock must be closed.</td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>Interval dead leg flushing</td>
<td>Waiting time [h] when there is no steam production until dead leg flushing is activated; only valid if switch 2-5 = „1“.</td>
</tr>
<tr>
<td></td>
<td>2-7</td>
<td>Duration dead leg flushing</td>
<td>Duration of dead leg flushing [s].</td>
</tr>
<tr>
<td></td>
<td>2-9</td>
<td>Steam-down time</td>
<td>This parameter serves for monitoring proper unit functioning. This setting could be useful if the power supply line is routed through a sensitive residual-current circuit breaker. When steam production is called-for by the control software, a cylinder filling variation must be detectable within the timespan defined by „2-9“. Should this not be registrated, the unit enters error state „123“ (error steam-down time) and cuts steam production.</td>
</tr>
</tbody>
</table>
Service

3-1 Reset steam-service interval
On finishing maintenance work, the service interval is to be reset (the service icon is blanked if it was illuminated before). After maintenance, reset the service interval as shown below (green LED is still blinking):

3-2 Reset K1 service interval
Main contactor switching cycles are monitored and compared to the life expectancy figure supplied by the part's manufacturer. On a match, reading value r01 is set to „270“ (and the service icon LED flashes). After changing the main contactor, parameter 3-2 must be set to „1“ for a reset of the status message.

3-3 Steam service interval
Unit control monitors the actual steam amount produced and compares it with the service steam amount that was determined by the parameter 3-3 setting. When the two data match, the service icon is lit. Steam humidifier operation is not disrupted.

Service rate highly depends on water quality (conductivity, hardness) and on the amount of steam produced since the last service. By varying parameter 3-3, the service interval may be adjusted to water quality.

<table>
<thead>
<tr>
<th>Group</th>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>3-1</td>
<td>Reset steam-service interval</td>
<td>On finishing maintenance work, the service interval is to be reset (the service icon is blanked if it was illuminated before). After maintenance, reset the service interval as shown below (green LED is still blinking):</td>
</tr>
<tr>
<td></td>
<td>3-2</td>
<td>Reset K1 service interval</td>
<td>Main contactor switching cycles are monitored and compared to the life expectancy figure supplied by the part's manufacturer. On a match, reading value r01 is set to „270“ (and the service icon LED flashes). After changing the main contactor, parameter 3-2 must be set to „1“ for a reset of the status message.</td>
</tr>
<tr>
<td></td>
<td>3-3</td>
<td>Steam service interval</td>
<td>Unit control monitors the actual steam amount produced and compares it with the service steam amount that was determined by the parameter 3-3 setting. When the two data match, the service icon is lit. Steam humidifier operation is not disrupted. Service rate highly depends on water quality (conductivity, hardness) and on the amount of steam produced since the last service. By varying parameter 3-3, the service interval may be adjusted to water quality.</td>
</tr>
</tbody>
</table>

Governing

These parameters are only effective when parameter 1-2 (control signal) holds a setting incorporating the PI controller.

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Set point r.h.</td>
<td>Parameter 4-1 determines the r.h. set point for control.</td>
</tr>
<tr>
<td>4-2</td>
<td>Gain PI controller</td>
<td>Sets the PI controller gain (Xp) [%]. Boosting PI-controller (Xp = 100/E1) [%]</td>
</tr>
<tr>
<td>4-3</td>
<td>Integral PI controller</td>
<td>Sets the PI controller resetting time (Xn). Boosting PI-controller (Xp = 100/E1) [%]</td>
</tr>
</tbody>
</table>
5-1 Switch stand-by heating
Stand-by heating is enabled or not (0= off, 1=on).

5-2 Interval stand-by heating
Parameter 5-2 determines the interval time between heating phases when stand-by heating was enabled.

5-3 On-time Stand-by heating
Parameter 5-3 sets the heating on-time when stand-by heating was enabled.

5-4 Basic relay allocation
The basic relay features potential-free NC and NO contacts across terminals 28,29 and 29,30, respectively (contact capacity is 250 VAC/8A). The base relay provides a potentialfree two-way contact at terminals 28, 29 and 30 (rated load: 250V/8A).

The relay is activated when a certain operating status is achieved. Parameter 5-4 allows for allocating a logical function, i.e. the relay is energised when a certain operating status occurs. Factory setting is „0“ defined as „collective fault“It is activated if certain operational conditions apply. The operational condition “collective fault” is preset.

The following allocations are supported:

(0) Collective fault: Relay is energised in case of any fault.

(1) Stand-by: Relay is energised when the unit is in stand-by. It is possible to associate another operational condition with the base relay circuit, also see Section: “Summary Table of Parameters” on Page 56, “Parameter E5.”

(2) No demand: Relay is energised when input signal creates no demand.

(3) Humidifying: Relay is energised when humidifying is active.

(5) Remote off: Relay is energised when safety interlock was opened under software by means of the building control system.

(30) Filling off: Relay is energised when filling is not active.

(31) Filling on: Relay is energised when filling.

<table>
<thead>
<tr>
<th>Group</th>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>5-1</td>
<td>Switch stand-by heating</td>
<td>Stand-by heating is enabled or not (0= off, 1=on).</td>
</tr>
<tr>
<td></td>
<td>5-2</td>
<td>Interval stand-by heating</td>
<td>Parameter 5-2 determines the interval time between heating phases when stand-by heating was enabled.</td>
</tr>
<tr>
<td></td>
<td>5-3</td>
<td>On-time Stand-by heating</td>
<td>Parameter 5-3 sets the heating on-time when stand-by heating was enabled.</td>
</tr>
<tr>
<td></td>
<td>5-4</td>
<td>Basic relay allocation</td>
<td>The basic relay features potential-free NC and NO contacts across terminals 28,29 and 29,30, respectively (contact capacity is 250 VAC/8A). The base relay provides a potentialfree two-way contact at terminals 28, 29 and 30 (rated load: 250V/8A). The relay is activated when a certain operating status is achieved. Parameter 5-4 allows for allocating a logical function, i.e. the relay is energised when a certain operating status occurs. Factory setting is „0“ defined as „collective fault“It is activated if certain operational conditions apply. The operational condition “collective fault” is preset. The following allocations are supported: (0) Collective fault: Relay is energised in case of any fault. (1) Stand-by: Relay is energised when the unit is in stand-by. It is possible to associate another operational condition with the base relay circuit, also see Section: “Summary Table of Parameters” on Page 56, “Parameter E5.” (2) No demand: Relay is energised when input signal creates no demand. (3) Humidifying: Relay is energised when humidifying is active. (5) Remote off: Relay is energised when safety interlock was opened under software by means of the building control system. (30) Filling off: Relay is energised when filling is not active. (31) Filling on: Relay is energised when filling.</td>
</tr>
</tbody>
</table>
Functions

5-4 Basic relay allocation (contd.)

(37) HyCool: Relay is energised for switching on HyCool-function solenoid valve.

(60) Blow-down off: Relay is energised when not pumping.

(61) Blow-down on: Relay is energised when pumping takes place.

(62) Partial blow-down: Relay is energised when a partial blow-down is run.

(63) Full blow-down: Relay is energised when a full blow-down is run.

(66) Max. level: Relay is energised when the max. allowable water level is overrun.

(67) Stand-by blow-down: Relay is energised when a stand-by blow-down is run.

(68) Dead leg blow-down: Relay is energised when a dead leg blow-down is run.

(69) Start-up blow-down: relay is energised when a start-up blow-down is run.

(270) Collective Service: Relay is energised when a service message status („Service steam amount“, „Service main contactor K1 switching cycles“) is active.

5-5 Relay_K20 allocation (connected to the ST10.1 connector on the mainboard)

Defines logical function of the optional relay K20 (in the same way as 5-4 does for the basic relay). Factory preset is „270“ (Collective service).

Exemption: In the SLH40 and SLH50 units Relay_K20 is used ex-factory for switching stage 2 (i.e. the 1-step control of 3 heater elements). Relay allocation is then „120“ ex-factory and can not be changed.

5-6 Modbus address

The control electronic may optionally be equipped with a RS485 serial interface for running data communication with the Modbus RTU protocol. 5-6 then holds the Modbus RTU address.

5-7 Relay_K21 allocation (connected to the ST10.1 connector on the mainboard)

Defines logical function of the optional relay K21 (in the same way as 5-4 does for the basic relay). Factory preset is „270“ (Collective service).
Settings

<table>
<thead>
<tr>
<th>Par.</th>
<th>Denomination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Buzzer</td>
<td>The control panel features a buzzer for prompting key strokes. Parameter 6-1 allows for muting the prompt.</td>
</tr>
<tr>
<td>6-2</td>
<td>Time-Out</td>
<td>Unit control switches the display back to actual steam output presentation after the time set in 6-2. Factory setting is „2 minutes“</td>
</tr>
<tr>
<td>6-3</td>
<td>Imperial units</td>
<td>This parameter enables a switch between SI units and imperial units. Actual steam output e.g. will then be in „lb/h“ instead of „kg/h“</td>
</tr>
</tbody>
</table>
12. Trouble shooting

12.1 Error handling

On occurrence of a fault, steam production is stopped. The control panel display is switched to error code output. In the same instance, the general fault icon \(\triangle\) starts flashing.

On „Steam production“, „Main contactor“, „Filling“ and „Blow-down“ faults, the respective icon is additionally blinked.

12.1.1 Table of possible faults and related error codes

<table>
<thead>
<tr>
<th>Icons</th>
<th>Code</th>
<th>Error message</th>
<th>Possible cause</th>
<th>Counter measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>000</td>
<td>No error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\triangle)</td>
<td>001</td>
<td>Sensor plug (ST09)</td>
<td>• Plug not attached or loose</td>
<td>• Check plug</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>022</td>
<td>Input_current_min</td>
<td>The min. value of the input signal is no plausible</td>
<td>• Sensor, wiring or signal source defective</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>022</td>
<td>Input_current_min</td>
<td>• Input stage defective</td>
<td>• Check sensor, wiring and signal source, if relevant</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>024</td>
<td>Input_resistance_OC</td>
<td>The resistance measured is not correct („infinite“ or „zero“, resp.)</td>
<td>• Sensor, input wiring or signal source not correct</td>
</tr>
<tr>
<td></td>
<td>025</td>
<td>Input_resistance_SC</td>
<td>• Input stage defective</td>
<td>• Check sensor, signal cable and signal source, if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*)</td>
<td></td>
<td>• Replace main PCB</td>
</tr>
</tbody>
</table>

*) When a PI controller is in use, errors 022-025 relate to the sensor output signals. With an external controller the controller output signal is concerned.

<table>
<thead>
<tr>
<th>Icons</th>
<th>Code</th>
<th>Error message</th>
<th>Possible cause</th>
<th>Counter measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle)</td>
<td>027</td>
<td>System failure</td>
<td>• Main PCB is defective</td>
<td>• Replace main PCB</td>
</tr>
<tr>
<td>Icons</td>
<td>Code</td>
<td>Error message</td>
<td>Possible cause</td>
<td>Counter measure</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| ![Warning](image1.png) ![Information](image2.png) | 030 | Filling | • Solenoid valve or water supply line contaminated or defective
• Solenoid valve defective
• Water supply not opened
• Solenoid valve electrically not driven
• electrical cabling not o.k.
• Main PCB relay not energised
• Blockage in steam pipe impedes the steam flow. The steam builds up pressure in the cylinder and presses the water into the drain.
• Steam hose not laid with sufficient incline/decline resulting in a water bag obstructing steam flow. Steam builds up pressure in steam cylinder and pushes water towards drain | • Clean water supply line and/or solenoid valve; replace solenoid valve, if defective
• Make measurement on solenoid; replace solenoid valve, if defective
• Open water supply
• Check electrical cable and replace, if required
- Measure voltage on main PCB terminal 11 against N; replace PCB, if required
• Remove blockage in steam pipe
• Check steam hose layout. Eliminate water bag. |
<table>
<thead>
<tr>
<th>Icons</th>
<th>Code</th>
<th>Error message</th>
<th>Possible cause</th>
<th>Counter measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>061</td>
<td>Partial blow-down</td>
<td>Blow-down pump not driven - electrical wiring not o.k. - Main PCB relay not energised</td>
<td>- Check wiring and replace, if required - Measure voltage on main PCB terminal 10 against N; replace PCB, if required</td>
</tr>
<tr>
<td></td>
<td>062</td>
<td>Full blow-down</td>
<td>Blow-down pump defective Blow-down pump working but water is not drained (i.e. cylinder drain is blocked) Blow-down pump blocked by hardeners</td>
<td>- Replace blow-down pump - Clean cylinder and cylinder base carefully to ensure that no blocking will occur in the near future - Check blow-down pump, drainage system and steam cylinder for hardeners and clean</td>
</tr>
<tr>
<td></td>
<td>065</td>
<td>Max level blow-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>066</td>
<td>Stand-by blow-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>067</td>
<td>Start blow-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicated blow-down was not successful</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>Thermo switch</td>
<td>Thermo switch on steam cylinder cover has triggered due to lime coating on heating element Capillary tube defective Thermo switch on solid state relay has triggered due to blocked ventilation</td>
<td>- Switch off power supply. Remove lime coating. Allow cool-down of steam cylinder. Push-back unblocking pin on thermo switch with needle-nose pliers or a screwdriver - Replace thermo switch - Switch off unit. Allow cool-down of heat sink. Restart humidifier operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the thermo switches has triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>Water sensor</td>
<td>Water sensor is defective Connecting hoses blocked</td>
<td>- Replace water sensor - Clean hoses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water sensor output signal not plausible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icons</td>
<td>Code</td>
<td>Error message</td>
<td>Possible cause</td>
<td>Counter measure</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| ![Alert](image) ![Progress](image) ![Time](image) | 122 | **Max. level**
Maximum water level was achieved 5 times | • Excessive air pressure in duct has impact on water in steam cylinder via steam hose. Water is pressed into drainage
• Solenoid valve closing action imperfect. Cylinder water level rises though solenoid valve is not energised
• Solenoid valve is permanently energised (water intake stops when unit is switched off)
• Large amounts of residues influence or restrict cyclic blow-down. The additional water introduction caused by the optional SuperFlush rinse device may cause the max. level fault | • Reduce air pressure
• Check solenoid valve
• Relay on main PCB stuck. Measure voltage across terminal 11 and N. Replace PCB, if required
• Clean steam cylinder, cylinder base, water sensor tubing and drainage system |
<table>
<thead>
<tr>
<th>Icons</th>
<th>Code</th>
<th>Error message</th>
<th>Possible cause</th>
<th>Counter measure</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>123</td>
<td>Steam down time Heater element (s) is/are driven but water level remains constant</td>
<td>• Heater element is defective</td>
<td>• Measure heater element resistance, replace heater element, if required. Typical resistance values are: SLH03 - 2.25kW/230V - 21.3...26.1Ω SLH06 – 4.5kW/400V – 32.3...39.5Ω SLH09 – 6.75kW/400V - 21.5...26.3Ω SLH15 – 3.8kW/400V – 38.2...46.8Ω (3x) SLH25 – 6.3kW/400V – 23.1...28.2Ω (3x) SLH40 – 6.3kW/400V – 23.1...28.2Ω (3x) + 3.8kW/400V – 38.2...46.8Ω (3x) SLH50 – 6.3kW/400V – 23.1...28.2Ω (6x)</td>
</tr>
<tr>
<td> </td>
<td>124</td>
<td>Main contactor coil Voltage detected across coil though main contactor is not driven by control logic</td>
<td>• Relay K4 on main PCB is stuck</td>
<td>• Replace relay</td>
</tr>
<tr>
<td> </td>
<td>210</td>
<td>R.h. sensor Humidity sensor signal implausibility</td>
<td>• Sensor cable defective • Sensor defective</td>
<td>• Check sensor cable • Replace sensor</td>
</tr>
<tr>
<td></td>
<td>ErL</td>
<td>Error Link no communication between mainboard and display</td>
<td>• Mainboard or display unit defective</td>
<td>• Replace mainboard or display unit</td>
</tr>
</tbody>
</table>
12.2 Table of functional disruptions

<table>
<thead>
<tr>
<th>Problem Possible Condition</th>
<th>Possible cause for faulty situation</th>
<th>Counter measure</th>
</tr>
</thead>
</table>
| Set humidity level not reached | • Output limitation parameter setting impedes full power output
• Nominal unit output insufficient
• Phase failure or defective heater element(s)
• Thermo switch has triggered
• Lengthy steam hose layout crossing cold and drafty rooms may lead to increased condensate formation
• Improper steam manifold installation may cause condensate formation within air duct
• Control signal not properly selected or software setting mismatch
• Excessive pressure in duct system caused by e.g. water bags or partly blocked steam pipes (max. overpressure is 1200 Pa) | • Check 1-1 parameter setting
• Check unit technical data, airflow and secondary airflow
• Check circuit breakers and heater element(s)
• Switch off power supply. Pushback unblocking pin on thermo switch with needle-nose pliers or a screwdriver
• Change unit installation location allowing for shorter steam hose. Insulate steam hose
• Check steam manifold position within total system and installation correctness
• Check control signal and „1-2“ parameter setting
• Eliminate particular cause(s) |
| Excessive humidity | • A steam output limitation setting that is too high may result in poor control performance and even condensate formation in ducts
• Control signal not properly selected or software setting mismatch | • Check „1-1“ parameter setting
• Check control signal and „1-2“ parameter setting |
| Water collects on bottom plate | • Cylinder improperly reassembled following maintenance:
- O-ring not replaced, defective or not in place
- Flange (tongue and groove) damaged
- Flange improperly composed
- Mineral deposits in flange area
• Cylinder improperly inserted in cylinder base | • Clean cylinder and assemble / install properly
• Using moistened new O-ring, insert steam cylinder properly into cylinder base |
<table>
<thead>
<tr>
<th>Problem Possible Condition</th>
<th>Possible cause for faulty situation</th>
<th>Counter measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Water cannot drain freely when pumped from cylinder</td>
<td>• Make sure drain is unobstructed</td>
<td></td>
</tr>
<tr>
<td>• Hose clamps on steam and/or condensate hose not tightened</td>
<td>• Tighten clamps</td>
<td></td>
</tr>
<tr>
<td>• Steam hose adapter not properly fit or o-ring not replaced</td>
<td>• Replace O-ring (if required) and ensure proper adapter installation</td>
<td></td>
</tr>
<tr>
<td>• Defective F1 and/or F2 fuses (1.6 A each) Defective fuse F1 1.6 A.</td>
<td>• Check micro fuses and replace, if required</td>
<td></td>
</tr>
<tr>
<td>• L3 phase failure (ext. circuit breaker has tripped or is defective)</td>
<td>• Replace breaker and investigate possible causes</td>
<td></td>
</tr>
<tr>
<td>• Device load circuit breaker has tripped</td>
<td>• Switch on breaker. If problem persists, check for reason</td>
<td></td>
</tr>
<tr>
<td>• Steam cylinder and/or drainage system blocked</td>
<td>• Clean cylinder base and/or drainage system, respectively</td>
<td></td>
</tr>
<tr>
<td>• Vent pipe is blocked</td>
<td>• Clean venting bore or replace vent pipe adapter</td>
<td></td>
</tr>
<tr>
<td>• Steam pipe improperly laid (water bag). Incorrect placement of steam line (water pocket)</td>
<td>• Rerun steam hose according to guide lines</td>
<td></td>
</tr>
<tr>
<td>• Excess pressure in duct system (max. overpressure is 1200 Pa/.17 psi)</td>
<td>• Consult your expert dealer if problem persists</td>
<td></td>
</tr>
</tbody>
</table>
13. Declaration of conformity

EU Konformitätserklärung
EU Declaration of Conformity

Hersteller / Manufacturer: HygroMatik GmbH
Anschrift / Address: Lise-Meitner-Straße 3, D-24558 Henstedt-Ulzburg, Germany
Produktbezeichnung: StandardLine Heizkörper (SLH):
/ Product description:
SLH03, SLH06, SLH09, SLH15, SLH25, SLH40, SLH50

Die bezeichneten Produkte stimmen in der von uns in Verkehr gebrachten Ausführung mit den Vorschriften folgender Europäischer Richtlinien überein:
The products described above in the form as delivered are in conformity with the provisions of the following European Directives:

2014/30/EU Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit.

2014/35/EU Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten betreffend elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen.

Die Konformität mit den Richtlinien wird nachgewiesen durch die Einhaltung folgender Normen:
Conformity to the Directives is assured through the application of the following standards:

<table>
<thead>
<tr>
<th>Reference Number:</th>
<th>Ausgabedatum:</th>
<th>Referenznummer:</th>
<th>Ausgabedatum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 61000-6-2</td>
<td>2006-03</td>
<td>DIN EN 60335-1</td>
<td>2012-10</td>
</tr>
<tr>
<td>DIN EN 61000-6-3</td>
<td>2011-09</td>
<td>DIN EN 60335-1 Ber.1</td>
<td>2014-04</td>
</tr>
<tr>
<td>DIN EN 62233</td>
<td>2008-11</td>
<td>DIN EN 60335-2-98</td>
<td>2009-04</td>
</tr>
<tr>
<td>DIN EN 62233 Ber.1</td>
<td>2009-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The requirements of the German Product Safety Law ProdSG regarding the ensurance of safety and health are met. Product modifications after delivery may result in a loss of conformity.

Henstedt-Ulzburg, den / the 29.09.2017

HygroMatik GmbH

Dirk Messenig
Geschäftsführer / General Manager

i.V. Frank Michaelsen
Leitung Technik / Head of Engineering

This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the product shall be considered in detail.
14. Spare Parts

<table>
<thead>
<tr>
<th>SLH03</th>
<th>SLH06</th>
<th>SLH09</th>
<th>SLH15</th>
<th>SLH25</th>
<th>SLH40</th>
<th>SLH50</th>
<th>Article No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-03-0100</td>
<td>Heating element CY08 3kg 208-240 V, incl. gaskets</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-03-0101</td>
<td>Heating element CY08 6kg 208-240 V, incl. gaskets</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-07-0100</td>
<td>Heating element CY17/45 5kg 208-240 V, incl. gasket</td>
</tr>
</tbody>
</table>

Steam cylinder *without* SuperFlush nozzle

1							SP-03-0102	Heating element CY08 3kg 380-415 V, incl. gaskets
1							SP-03-0103	Heating element CY08 6kg 380-415 V, incl. gaskets
3	3	6					SP-07-0101	Heating element CY17/45 5kg 380-415 V, incl. gasket

Steam cylinder *with* SuperFlush nozzle

1							SP-06-0101	Steam cylinder SLH06 CY17 380-415 V, incl. O-ringset
1							SP-06-0102	Steam cylinder SLH09 CY17 380-415 V, incl. O-ringset
1							SP-06-0103	Steam cylinder SLH15 CY17 380-415 V, incl. O-ringset

Steam generation 440-480 V

1							SP-03-0103	Heating element CY08 6kg 440-480 V, incl. gaskets
1							SP-03-0104	Heating element CY08 9kg 440-480 V, incl. gaskets
3	3	6					SP-07-0102	Heating element CY17/45 5kg 440-480 V, incl. gasket

Steam cylinder *without* SuperFlush nozzle

| 1 | | | | | | | SP-03-0102 | Heating element CY08 3kg 380-415 V, incl. gaskets |
| 1 | | | | | | | SP-03-0103 | Heating element CY08 6kg 380-415 V, incl. gaskets |

Steam cylinder *with* SuperFlush nozzle

| 1 | | | | | | | SP-06-0101 | Steam cylinder SLH06 CY17 440-480 V, incl. O-ringset |
| 1 | | | | | | | SP-06-0102 | Steam cylinder SLH09 CY17 440-480 V, incl. O-ringset |

Steam generation general

| 1 | 1 | | | | | | AC-03-0100 | O-ringset (Pos. 3, 17, 31, 33, 34, 35) |
| 1 | 1 | | | | | | AC-04-0100 | O-ringset (Pos. 3, 17, 31, 33, 34, 35) |

Water level sensor complete with cable

| 1 | 1 | | | | | | CN-07-0101 | Water level sensor complete with cable |

Adapter for Steam hose for cylinder CY08 DN40-25

| 1 | 1 | 2 | 2 | | | | E-2209018 | Adapter for Steam hose for cylinder CY08 DN40-25 |

Adapter for Steam hose for cylinder CY17/45 DN40-40

| 1 | 1 | 2 | 2 | | | | E-2209004 | Adapter for Steam hose for cylinder CY17/45 DN40-40 |

Clip for adapter

| 2 | 1 | 1 | 2 | 2 | | | E-2209002 | Clip for adapter |
For ordering spare parts, a template can be found on the www.hygromatik.com website under the „Contact“ tab. Your spare parts order may as well be directed per e-mail to the HygroMatik main office using the address hy@hygromatik.de.

Please make sure to specify your unit model and serial number.

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF-03-00010</td>
<td>Water feed hose system incl. Cylinder base and mounting set</td>
</tr>
<tr>
<td>WF-04-03001</td>
<td>Water feed hose system incl. Cylinder base and mounting set</td>
</tr>
<tr>
<td>WF-06-03001</td>
<td>Water feed hose system incl. Cylinder base and mounting set</td>
</tr>
<tr>
<td>WF-04-03002</td>
<td>Water feed hose system incl. Cylinder base and mounting set</td>
</tr>
<tr>
<td>WF-06-03002</td>
<td>Water feed hose system incl. Cylinder base and mounting set</td>
</tr>
<tr>
<td>B-2425005</td>
<td>Pump-drain-hose-system (Pos. 6, 14, 15, 30, 31)</td>
</tr>
<tr>
<td>B-2425009</td>
<td>Pump-drain-hose-system (Pos. 6, 14, 15, 30, 31)</td>
</tr>
<tr>
<td>B-2404027</td>
<td>Drain pump without mounting set, with 2 o-rings</td>
</tr>
<tr>
<td>B-2424014</td>
<td>Mounting set for drain pump</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Article No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-2507040</td>
<td>Main contactor 20A, K1 - SLH03-09</td>
</tr>
<tr>
<td>E-2507060</td>
<td>Main contactor 35A, K1 - SLH15-25</td>
</tr>
<tr>
<td>E-2507071</td>
<td>Main contactor 50A, K1 - SLH40</td>
</tr>
<tr>
<td>E-2507081</td>
<td>Main contactor 65A, K1 - SLH50</td>
</tr>
<tr>
<td>CN-03-01000</td>
<td>Solid state relay for SLH03-09 incl. heatsink & temp. limiter</td>
</tr>
<tr>
<td>CN-07-01000</td>
<td>Solid state relay for SLH15-50 incl. heatsink & temp. limiter</td>
</tr>
<tr>
<td>WR-03-01000</td>
<td>Connector e-compartment - water compartment, plug + socket</td>
</tr>
<tr>
<td>WR-07-01000</td>
<td>Connector e-compartment - water compartment, plug + socket</td>
</tr>
<tr>
<td>CN-07-00000</td>
<td>Mainboard, fuse 1.6A (used when power supply for the mainboard is generated by a transformer)</td>
</tr>
<tr>
<td>CN-07-00001</td>
<td>Display</td>
</tr>
<tr>
<td>CN-05-00012</td>
<td>Clip for display</td>
</tr>
<tr>
<td>E-2502412</td>
<td>Control switch, double pole, middle position = "0"</td>
</tr>
</tbody>
</table>

For ordering spare parts, a template can be found on the www.hygromatik.com website under the „Contact“ tab. Your spare parts order may as well be directed per e-mail to the HygroMatik main office using the address hy@hygromatik.de.

Please make sure to specify your unit model and serial number.
This page intentionally left blank
15. Technical specifications

<table>
<thead>
<tr>
<th>Unit type</th>
<th>SLH03</th>
<th>SLH06</th>
<th>SLH09</th>
<th>SLH15</th>
<th>SLH25</th>
<th>SLH40</th>
<th>SLH50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam output [kg/h]</td>
<td>2.7 - 3.0 - 3.3</td>
<td>5.5 - 6.0 - 6.5</td>
<td>8.2 - 9.0 - 9.8</td>
<td>13.7 - 15.0 - 16.4</td>
<td>22.7 - 25.0 - 27.1</td>
<td>36.5 - 40.0 - 43.5</td>
<td>45.5 - 50.0 - 54.5</td>
</tr>
<tr>
<td>Electrical connection(1)</td>
<td>220 - 230 - 240V /1Ph /N /50-60Hz</td>
<td>380 - 400 - 415V /3Ph /50-60Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated power [kW]</td>
<td>2.1 - 2.3 - 2.4</td>
<td>4.1 - 4.5 - 4.9</td>
<td>6.2 - 6.8 - 7.3</td>
<td>10.3 - 11.4 - 12.3</td>
<td>17.1 - 18.9 - 20.3</td>
<td>27.3 - 30.3 - 32.6</td>
<td>34.1 - 37.8 - 40.7</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>9.4 - 9.8 - 10.2</td>
<td>18.7 - 19.6 - 20.4</td>
<td>10.7 - 11.3 - 11.7</td>
<td>16 - 16.9 - 17.5</td>
<td>15.6 - 16.5 - 17.1</td>
<td>25.9 - 27.3 - 28.3</td>
<td>41.5 - 43.7 - 45.4</td>
</tr>
<tr>
<td>Fuse [A]</td>
<td>1 x 16</td>
<td>1 x 25</td>
<td>3 x 16</td>
<td>3 x 20</td>
<td>3 x 32</td>
<td>3 x 50</td>
<td>3 x 63</td>
</tr>
<tr>
<td>Control</td>
<td>StandardLine mainboard with capacitive touch display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate control voltage(4)</td>
<td>220 - 240V /N /1,6A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam hose connection [mm]</td>
<td>1 x 25</td>
<td>1 x 40</td>
<td>2 x 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty weight [kg]</td>
<td>14</td>
<td>23</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. filling capacity [l]</td>
<td>5</td>
<td>14</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation weight [kg]</td>
<td>19</td>
<td>38</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width(5) [mm]</td>
<td>350</td>
<td>425</td>
<td>590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height(6) [mm]</td>
<td>535</td>
<td>695</td>
<td>790</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth(6) [mm]</td>
<td>245</td>
<td>320</td>
<td>415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water connection</td>
<td>fully demineralised water / cleaned condensate / partially softened tap water of varying qualities 1 to 10 bar, 1 to 10 bar, for 3/4" external thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain water connection</td>
<td>Connection Ø 1 1/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Other voltages upon request.
(4) Internal control voltage upon request.
(6) Outer dimensions of width and depth. Height incl. drain connection.
16. Exploded view

The figure following shows the SLH25 model composition. The number of cylinders and heater elements vary with respect to the complete SLH series.

The index numbers in the figure correspond to the spare parts list.

The number of steam outlets and the size of their connections can be found in the technical data.
17. View of housing

This figure shows an example of one of the smaller unit sizes of the StandardLine series.